《强化训练京改版九年级数学下册第二十六章-综合运用数学知识解决实际问题同步训练试题(名师精选).docx》由会员分享,可在线阅读,更多相关《强化训练京改版九年级数学下册第二十六章-综合运用数学知识解决实际问题同步训练试题(名师精选).docx(21页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、第二十六章 综合运用数学知识解决实际问题同步训练 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、某校数学兴趣小组为测量学校旗杆AC的高度,在点F处竖立一根长为1.5米的标杆DF,如图所示,量出DF的影子E
2、F的长度为1米,再量出旗杆AC的影子BC的长度为6米,那么旗杆AC的高度为( )A6米B7米C8.5米D9米2、有n个人报名参加甲、乙、丙、丁四项体育比赛活动,规定每人至少参加1项比赛,至多参加2项比赛,但乙、丙两项比赛不能同时兼报,若在所有的报名方式中,必存在一种方式至少有10个人报名,则n的最小值等于( )A91B90C82D813、某款国产手机上有科学计算器,依次按键:,显示的结果在哪两个相邻整数之间()A23B34C45D564、一个物体从A点出发,沿坡度为1:7的斜坡向上直线运动到B,AB=30米时,物体升高()米AB3CD以上的答案都不对5、几何原本是欧几里得的一部不朽之作,本书以
3、公理和原始概念为基础,推演出更多的结论,这种做法为人们提供了一种研究问题的方法这种方法所体现的数学思想是( )A数形结合思想B分类讨论思想C转化思想D公理化思想6、用0,1,2,3,4,5六个数字组成无重复数字的四位数中有( )个四位偶数A96B156C180D2167、几何中研究物体时不研究它的( )A形状B大小C位置关系D颜色8、某同学要统计本校图书馆最受学生欢迎的图书种类,以下是排乱的统计步骤:从扇形图中分析出最受学生欢迎的种类去图书馆收集学生借阅图书的记录绘制扇形图来表示各个种类所占的百分比整理借阅图书记录并绘制频数分布表正确统计步骤的顺序是()ABCD9、七巧板是中国古代劳动人民的发
4、明,其历史至少可以追溯到公元前一世纪为祝贺辛丑年的到来,用一副七巧板(如图),拼成了“牛气冲天”的图案(如图),则图中( )A360B270C225D18010、我国数学家华罗庚曾建议,用一副反应勾股定理的数形关系图来作为和外星人交谈的语言,就勾股定理本身而言,它揭示了直角三角形的三边之间的关系,它体现的数学思想方法是( )A分类思想B方程思想C转化D数形结合第卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、若三个互不相等的有理数既可表示为1,的形式,又可表示为0,的形式,则_,_2、有15袋糖果,其中14袋同样重,有一袋少了2颗,质量稍轻,如果用天平称,至少称_次才能保
5、证找出这袋稍轻的糖果.3、我们注意到,它们分别由三个连续数码2,3,4以及5,6,7经适当排列而成;而则是由四个连续数码3,4,5,6适当排列而成;那么下一个这种平方数是;_4、设函数的图象关于(1,0)中心对称,则_5、某农户2008年的年收入为5万元,由于党的惠农政策的落实,2010年年收入增加到7.2万元,则平均每年的增长率是 _三、解答题(5小题,每小题10分,共计50分)1、在一平直河岸l同侧有A,B两个村庄,A,B到l的距离分别是3km和2km,ABakm(a1)现计划在河岸l上建一抽水站P,用输水管向两个村庄供水方案设计某班数学兴趣小组设计了两种铺设管道方案:图1是方案一的示意图
6、,设该方案中管道长度为d1,且d1PB+BA(km)(其中BPl于点P);图2是方案二的示意图,设该方案中管道长度为d2,且d2PA+PB(km)(其中点A与点A关于l对称,AB与l交于点P)观察计算(1)在方案一中,d1 km(用含a的式子表示)(2)在方案二中,组长小宇为了计算d2的长,作了如图3所示的辅助线,请你按小宇同学的思路计算,d2 km(用含a的式子表示)探索归纳(1)当a4时,比较大小:d1 d2(填“”、“”或“”);当a6时,比较大小:d1 d2(填“”、“”或“”);(2)请你参考方框中的方法指导,就a(当a1时)的所有取值情况进行分析,要使铺设的管道长度较短,应选择方案
7、一还是方案二?2、我们将能完全覆盖某平面图形的最小圆称为该平面图形的最小覆盖圆例如线段的最小覆盖圆就是以线段为直径的圆(1)请分别作出图1中两个三角形的最小覆盖圆(要求用尺规作图,保留作图痕迹,不写作法);(2)探究三角形的最小覆盖圆有何规律?请写出你所得到的结论(不要求证明);(3)某地有四个村庄,(其位置如图2所示),现拟建一个电视信号中转站,为了使这四个村庄的居民都能接收到电视信号,且使中转站所需发射功率最小(距离越小,所需功率越小),此中转站应建在何处?请说明理由3、(定义)配方法是指将一个式子或一个式子的某一部分通过恒等变形华为完全平方式或几个完全平方式的和,这种方法称之为配方法.例
8、如:可将多项式通过恒等变形化为的形式,这个变形过程中应用了配方法.(理解)对于多项式,当 时,它的最小值为 .(应用)若,求的值.(拓展)、是的三边,且有.(1)若为整数,求的值.(2)若是等腰三角形,直接写出这个三角形的周长.4、如图,某公路隧道横截面为抛物线,其最大高度为 6 米,底部宽度OM 为 12 米现以 O 点为原点,OM 所在直线为 x 轴建立直角坐标系(1)直接写出点 M 及抛物线顶点 P 的坐标;(2)求这条抛物线的解析式;(3)若要搭建一个矩形“支撑架”ADDCCB,使 C 、D 点在抛物线上,A、B 点在地面 OM 上,则这个“支撑架”总长的最大值是多少?5、如图,现有m
9、、n两堵墙,两个同学分别在A处和B处,请问小明在哪个区域内活动才不会被这两个同学发现(画图用阴影表示)-参考答案-一、单选题1、D【详解】试题分析:在同一时刻物高和影长成正比,即在同一时刻的两个物体,影子,经过物体顶部的太阳光线三者构成的两个直角三角形相似根据相似三角形的对应边的比相等,即可求解解:DEAB,DFAC,DEFABC,=,即=,AC=61.5=9米故答案为9【点评】此题考查相似三角形的实际运用,解题时关键是找出相似的三角形,然后根据对应边成比例列出方程,建立适当的数学模型来解决问题2、C【分析】先计算出一个人报名的选择有9种,然后根据必存在一种方式至少有10个人报名,可以让每一种
10、方式都有9个人,然后只要任意一种再加一个人,继而可得出n的值【详解】解:对于一个人来说,他的报名方式有两种:报一项或两项,报一项比赛的方式有4种,报两项比赛的方式有5种,故可得:每个人报名方式有9种,又题目要求有10人相同,故可以让每一种方式都有9个人,然后只要任意一种再加一个人即可,所以nmin=99+1=82故选:C【点睛】此题考查了计数方法的问题,根据题意得出每人的报名方式有9种是解答本题的关键,要注意仔细理解题意,难度较大3、B【分析】用计算器计算得3.464101615得出答案【详解】解:使用计算器计算得,4sin603.464101615,故选:B【点睛】本题考查计算器的使用,正确
11、地操作和计算是得出正确答案的前提4、B【分析】根据坡度即可求得坡角的正弦值,根据三角函数即可求解;【详解】坡比在实际问题中的应用解:坡度为1:7,设坡角是,则sin=,上升的高度是:30米故选B【点睛】本题主要考查了解直角三角形的应用,准确分析计算是解题的关键5、D【分析】结合题意,根据公理化思想的性质分析,即可得到答案【详解】根据题意,这种方法所体现的数学思想是:公理化思想故选:D【点睛】本题考查了公理化思想的知识;解题的关键是熟练掌握公理化思想的性质,从而完成求解6、B【分析】无重复数字的四位偶数包含个位是0和个位是2或4的两种情况,由此能得出无重复数字的四位偶数的个数【详解】解:无重复数
12、字的四位偶数个位是0的有个,个位是2或4的共有个,无重复数字的四位偶数共有60+96=156个,故选:B【点睛】本题考查了分类分步计数法的综合运用,考查了学习综合分析,分类讨论的能力,属于中档题7、D【分析】根据数学学科常识即可解答,几何中我们不研究物体的颜色、质量和材质等【详解】几何中研究物体的形状、大小和位置关系,不研究它的颜色、质量和材质等故选D【分析】本题主要考查几何基本知识,理解几何研究的内容是解题关键8、D【分析】根据频数分布表、扇形统计图制作的步骤,可以解答本题【详解】由题意可得:正确统计步骤的顺序是:去图书馆收集学生借阅图书的记录整理借阅图书记录并绘制频数分布表绘制扇形图来表示
13、各个种类所占的百分比从扇形图中分析出最受学生欢迎的种类故选D【点睛】本题考查了扇形统计图、频数分布表,解答本题的关键是明确制作频数分布表和扇形统计图的制作步骤9、D【分析】根据七巧板中出现的角的特殊性,得到,算出结果即可【详解】解:七巧板中的角都是特殊的,出现的角是45、90、135和180;,故选:D【点睛】本题主要考查七巧板的特点,由五个等腰直角三角形、一个平行四边形、一个正方形组成,关键是七巧板中出现的角都是45的整数倍10、D【分析】根据题意选出数学思想方法即可【详解】解:就勾股定理本身而言,它揭示了直角三角形的三边之间的关系,它体现的数学思想方法是数形结合思想,故选D 【点睛】本题考
14、查数学思想方法的运用,熟练掌握各种数学思想方法是解题的关键二、填空题1、-1 1 【分析】根据题意得到中不能等于0,又不能等于,可以得到,求出a、b即可【详解】解:三个互不相等的有理数表示为1,0,中不能等于0,又不能等于,【点睛】本题考查了代数式的求值,关键是根据两个数组的数分别对应相等确定a,b的值2、3【分析】根据题意,首先把15袋糖果平均分成三组,每组5袋,把任意的两组称第一次,找到较轻的一组,然后把这组分成2袋,2袋,1袋的三组,把相同袋数的两组称第二次,找到较轻的那组,若同样重则剩下的那袋即为少了2颗的那袋,若不一样重,则还需要找到较轻的那组中的两袋称第三次,即可最终确保找到少了2
15、颗的那袋.【详解】首先把15袋糖果平均分成三组,每组5袋,把少了两颗的那袋记作A,把其中任意两组放在天平上称第一次,此时若平衡,则可判断A在没称的那一组,若此时不平衡,则可判断A在称量两组中较轻的一组;然后把可判断出A的一组中的5袋,继续分成2袋,2袋,1袋这样的a,b,c三组,此时把a组和b组放天平称第二次,若平衡,则A就是c组里面的这袋,若不平衡,则A在a组和b组中较轻的那组中,因为此时出现两种情况,只有在平衡的情况才能找到A,所以要进行第三次称量,第三次只要把上一次称量较轻那组中的两袋分开称,则较轻的为A.所以至少需要称量3次.故答案为3【点睛】本题可以进行多袋分组,用整体重量判断较轻的
16、那袋的所处的分组,慢慢的缩小范围,直至确定找到.3、5476【分析】从672开始查找,找到第一个由四个连续数码组成的平方数,即为所求的平方数【详解】解:672=4489,不符合要求;682=4624,不符合要求;692=4761,不符合要求;702=4900,不符合要求;712=5041,不符合要求;722=5184,不符合要求;732=5329,不符合要求;742=5476,符合要求下一个这种平方数是5476故答案为:5476【点睛】本题考查了完全平方数,数学上,平方数,或称完全平方数,完全平方数,是指可以写成某个整数的平方的数,即其平方根为整数的数本题关键是按照顺序查找4、5【分析】根据y
17、|xm|xn|的图象关于点(,0)对称,结合已知条件,可得a的值【详解】解:y|xm|xn|的图象关于点(,0)对称,又函数y|x3|xa|x(3)|xa|的图象关于点(1,0)中心对称,故1,解得a5,故答案为:5.【点睛】本题考查的知识点是绝对值函数的对称性,其中熟练掌握y|xm|xn|的图象关于点(,0)对称,是解答的关键5、20%【分析】通过理解题意可知本题的等量关系,即2008年的收入(1+增长率)2=2010年的收入,根据这个等量关系,可列出方程,再求解【详解】解:设平均每年的增长率是x,则:5(1+x)2=7.2,即1+x=1.2,解c:x1=0.2或x2=-2.2(不合题意,应
18、舍去)答:平均每年的增长率是20%点评:本题考查了一元二次方程应用中求平均变化率的方法若设变化前的量为a,变化后的量为b,平均变化率为x,则经过两次变化后的数量关系为a(1x)2=b三、解答题1、观察计算:(1)a+2;(2);探索归纳:(1),;(2)当a5时,选方案二;当a5时,选方案一或方案二;当1a5时,选方案一【分析】观察计算:(1)由题意可得PB2,即可得d1的值为a+2;(2)由条件根据勾股定理可以求出KB的值,由轴对称可以求出AK的值,在RtKBA由勾股定理可以求出AB的值就是管道长度;探索归纳:(1)把a4代入d1a+2和d2就可以比较其大小;把a6代入d1a+2和d2就可以
19、比较其大小;(2)类比题目中所给的方法,分类进行讨论求出a的范围,继而确定选择方案【详解】(1)由题意可得PB2,d1PB+BAa+2;故答案为a+2;(2)因为BK2a21,AB2BK2+AK2a21+52a2+24d2;故答案为;探索归纳:(1)当a4时,d16,d2 ,d1d2;当a6时,d18,d2,d1d2;故答案为,;(2)d12d22(a+2)2()24a20当4a200,即a5时,d12d220,d1d20,d1d2;当4a200,即a5时,d12d220,d1d20,d1d2当4a200,即a5时,d12d220,d1d20,d1d2综上可知:当a5时,选方案二;当a5时,选
20、方案一或方案二;当1a5时,选方案一【点睛】本题考查了轴对称的性质的运用,最短路线问题数学模式的运用,勾股定理的运用,数的大小的比较方法的运用,综合考查了学生的作图能力,运用数学知识解决实际问题的能力,以及观察探究和分类讨论的数学思想方法2、(1)见解析;(2)见解析;(3)的外接圆圆心处【分析】(1)若三角形为锐角三角形,则其最小覆盖圆为其外接圆;若三角形为直角或钝角三角形,则其最小覆盖圆是以三角形最长边(直角或钝角所对的边)为直径的圆;(2)利用(1)的结论解决第(2)问(3)中转站应建在的外接圆圆心处(线段的垂直平分线与线段的垂直平分线的交点处)根据是锐角三角形,可知其最小覆盖圆为的外接
21、圆,所以中转站建在的外接圆圆心处,能够符合题中要求【详解】(1)如图所示:(2)若三角形为锐角三角形,则其最小覆盖圆为其外接圆;若三角形为直角或钝角三角形,则其最小覆盖圆是以三角形最长边(直角或钝角所对的边)为直径的圆(3)此中转站应建在的外接圆圆心处(线段的垂直平分线与线段的垂直平分线的交点处)理由如下:由,故是锐角三角形,所以其最小覆盖圆为的外接圆,设此外接圆为O,直线与O交于点,则故点在O内,从而O也是四边形的最小覆盖圆所以中转站建在的外接圆圆心处,能够符合题中要求【点睛】本题结合三角形外接圆的性质作图,关键要懂得何为最小覆盖圆知道若三角形为锐角三角形,则其最小覆盖圆为其外接圆;若三角形
22、为直角或钝角三角形,则其最小覆盖圆是以三角形最长边(直角或钝角所对的边)为直径的圆3、【理解】,;【应用】;【拓展】(1)c的值为4,5,6;(2)12.【解析】【试题分析】【理解】= ,得当2时,它的最小值为1.【应用】,变形得: 配方得: 则,解得, 则 【拓展】(1),配方得:则,解得,根据三角形两边之和大于第三边,两边之差小于第三边得:因为为整数,则的值为4,5,6 (2)2,2,5(舍去)与5,5,2两种情况,得:等腰三角形的周长为12.【试题解析】【理解】 【应用】, ,解得, 【拓展】(1),解得,为整数,的值为4,5,6 (2)2,2,5(舍去)与5,5,2两种情况,得:等腰三
23、角形的周长为12.【方法点睛】本题目是一道新定义题目,涉及知识点有,利用配方法,根据完全平方式的非负性求最值,三角形的三边关系,等腰三角形的周长,难度适中.4、(1) M(12,0) ,P(6,6);(2);(3)当m=3时,AD+DC+CB有最大值为15米.【分析】(1)根据所建坐标系易求M、P的坐标;(2)可设解析式为顶点式,把O点(或M点)坐标代入求待定系数求出解析式;(3)总长由三部分组成,根据它们之间的关系可设A点坐标为(m,0),用含m的式子表示三段的长,再求其和的表达式,运用函数性质求解【详解】(1)易知底部宽度为12米所以OM=12.则M(12,0),最大高度为6米,所以P(6,6).(2)设此函数关系式为:.函数经过点(0,0),即.此函数解析式为:.(3)设A(m,0),则B(12-m,0),C,D.“支撑架”总长AD+DC+CB =.此二次函数的图象开口向下.当m=3米时,AD+DC+CB有最大值为15米点评:本题难度在第(3)问,要分别求出三部分的表达式再求其和关键在根据图形特点选取一个合适的参数表示它们,得出关系式后运用函数性质来解5、见解析【解析】【试题分析】根据光沿直线传播,两人同时看不到的地方即为所求的区域.【试题解析】小明在阴影部分的区域就不会被发现