2022年北师大版九年级数学下册第三章-圆月考试题(含详解).docx

上传人:可****阿 文档编号:32523301 上传时间:2022-08-09 格式:DOCX 页数:30 大小:902.39KB
返回 下载 相关 举报
2022年北师大版九年级数学下册第三章-圆月考试题(含详解).docx_第1页
第1页 / 共30页
2022年北师大版九年级数学下册第三章-圆月考试题(含详解).docx_第2页
第2页 / 共30页
点击查看更多>>
资源描述

《2022年北师大版九年级数学下册第三章-圆月考试题(含详解).docx》由会员分享,可在线阅读,更多相关《2022年北师大版九年级数学下册第三章-圆月考试题(含详解).docx(30页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。

1、北师大版九年级数学下册第三章 圆月考 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、如图,四边形ABCD内接于,若,则的度数为( )A50B100C130D1502、如图,正的边长为,边长为的正的顶点R与

2、点A重合,点P,Q分别在AC,AB上,将沿着边AB,BC,CA连续翻转(如图所示),直至点P第一次回到原来的位置,则点P运动路径的长为( )ABCD3、计算半径为1,圆心角为的扇形面积为( )ABCD4、如图,点A,B,C在O上,若ACB40,则AOB的度数为()A40B45C50D805、在ABC中,点O为AB中点以点C为圆心,CO长为半径作C,则C 与AB的位置关系是( )A相交B相切C相离D不确定6、如图,BD是O的切线,BCE30,则D()A40B50C60D307、如图,点,在上,是等边三角形,则的大小为( )A60B40C30D208、如图,AB是O的直径,CD为弦,CDAB于点E

3、,则下列结论中不成立是( )A弧AC弧ADB弧BC弧BDCCEDEDOEBE9、如图,直线交x轴于点A,交y轴于点B,点P是x轴上一动点,以点P为圆心,以1个单位长度为半径作P,当P与直线AB相切时,点P的坐标是()ABC或D(2,0)或(5,0)10、下列叙述正确的有( )个.(1)随着的增大而增大;(2)如果直角三角形斜边的长是斜边上的高的4倍,那么这个三角形两个锐角的度数分别是和;(3)斜边为的直角三角形顶点的轨迹是以中点为圆心,长为直径的圆;(4)三角形三边的垂直平分线的交点到三角形三个顶点的距离相等;(5)以为三边长度的三角形,不是直角三角形A0B1C2D3第卷(非选择题 70分)二

4、、填空题(5小题,每小题4分,共计20分)1、如图,正六边形的边长为2,以为圆心,的长为半径画弧,得,连接,则图中阴影部分的面积为_2、一个正多边形的中心角是,则这个正多边形的边数为_3、AC是O的直径,弦BDAC于点E,连接BC,过点O作OFBC于点F,若BD12cm,OEcm,则OF_cm4、 “化圆为方”是古希腊尺规作图难题之一,即:求作一个正方形,使其面积等于给定圆的面积这个问题困扰了人类上千年,直到19世纪,该问题被证明仅用直尺和圆规是无法完成的如果借用一个圆形纸片,我们就可以化圆为方,方法如下:已知:O(纸片),其半径为求作:一个正方形,使其面积等于O的面积作法:如图1,取O的直径

5、,作射线,过点作的垂线;如图2,以点为圆心,为半径画弧交直线于点;将纸片O沿着直线向右无滑动地滚动半周,使点,分别落在对应的,处;取的中点,以点为圆心,为半径画半圆,交射线于点;以为边作正方形正方形即为所求根据上述作图步骤,完成下列填空:(1)由可知,直线为O的切线,其依据是_(2)由可知,则_,_(用含的代数式表示)(3)连接,在Rt中,根据,可计算得_(用含的代数式表示)由此可得5、如图,已知扇形的圆心角为60,半径为2,则图中弓形(阴影部分)的面积为_三、解答题(5小题,每小题10分,共计50分)1、已知:如图,射线求作:,使得点在射线上,作法:在射线上任取一点;以点为圆心,的长为半径画

6、圆,交射线于另一点;以点为圆心,的长为半径画弧,在射线上方交于点;连接、(1)使用直尺和圆规,依作法补全图形(保留作图痕迹);(2)完成下面的证明证明:为的直径,点在上,(_)(填推理依据)连接,为等边三角形(_)(填推理依据)所以为所求作的三角形2、如图,AB是O的直径,弦CDAB于点E,AM是ACD的外角DAF的平分线(1)求证:AM是O的切线;(2)连接CO并延长交AM于点N,若O的半径为2,ANC = 30,求CD的长3、如图,圆是的内切圆,其中,求其内切圆的半径4、如图,内接于,弦AE与弦BC交于点D,连接BO,(1)求证:;(2)若,求的度数;(3)在(2)的条件下,过点O作于点H

7、,延长HO交AB于点P,若,求半径的长5、如图,点D是上一点,与相交于点F,且(1)求证:;(2)求证:;(3)若点D是中点,连接,求证:平分-参考答案-一、单选题1、B【分析】根据圆内接四边形的性质求出A的度数,根据圆周角定理计算即可【详解】解:四边形ABCD内接于O,A+DCB=180,DCB=130,A=50,由圆周角定理得,=2A=100,故选:B【点睛】本题考查的是圆内接四边形的性质和圆周角定理,掌握圆内接四边形的对角互补是解题的关键2、B【分析】从图中可以看出在AB边,翻转的第一次是一个120度的圆心角,半径是1,第二次是以点P为圆心,所以没有路程,同理在AC和BC上也是相同的情况

8、,由此求解即可【详解】解:从图中可以看出在AB边,翻转的第一次是一个120度的圆心角,半径是1,所以弧长=,第二次是以点P为圆心,所以没有路程,在BC边上,第一次,第二次同样没有路程,AC边上也是如此,点P运动路径的长为3=2故选:B【点睛】本题主要考查了等边三角形的性质,求弧长,解题的关键在于能够根据题意得到P点的运动轨迹3、B【分析】直接根据扇形的面积公式计算即可【详解】故选:B【点睛】本题考查了扇形的面积的计算,熟记扇形的面积公式是解题的关键4、D【分析】由ACB=40,根据在同圆或等圆中,同弧或等弧所对的圆周角等于这条弧所对的圆心角的一半,即可求得AOB的度数【详解】解:ACB=40,

9、AOB=2ACB=80故选:D【点睛】本题考查了圆周角定理此题比较简单,解题的关键是掌握在同圆或等圆中,同弧或等弧所对的圆周角等于这条弧所对的圆心角的一半定理的应用5、B【分析】根据等腰三角形的性质,三线合一即可得,根据三角形切线的判定即可判断是的切线,进而可得C 与AB的位置关系【详解】解:连接,,点O为AB中点CO为C的半径,是的切线,C 与AB的位置关系是相切故选B【点睛】本题考查了三线合一,切线的判定,直线与圆的位置关系,掌握切线判定定理是解题的关键6、D【分析】连接,根据同弧所对的圆周角相等,等角对等边,三角形的外角性质可得,根据切线的性质可得,根据直角三角形的两个锐角互余即可求得【

10、详解】解:连接 BD是O的切线故选D【点睛】本题考查了切线的性质,等弧所对的圆周角相等,直角三角形的两锐角互余,掌握切线的性质是解题的关键7、C【分析】由为等边三角形,得:AOB=60,再根据圆周角定理,即可求解【详解】解:为等边三角形,AOB=60,=AOB =60=30故选C【点睛】本题主要考查圆周角定理,掌握同弧所对的圆周角是圆心角的一半是解题的关键8、D【分析】根据垂径定理解答【详解】解:AB是O的直径,CD为弦,CDAB于点E,弧AC弧AD,弧BC弧BD,CEDE,故选:D【点睛】此题考查了垂径定理:垂直于弦的直径平分弦,并且平分弦所对的两条弧,熟记定理是解题的关键9、C【分析】由题

11、意根据函数解析式求得A(-4,0),B(0-3),得到OA=4,OB=3,根据勾股定理得到AB=5,设P与直线AB相切于D,连接PD,则PDAB,PD=1,根据相似三角形的性质即可得到结论【详解】解:直线交x轴于点A,交y轴于点B,令x=0,得y=-3,令y=0,得x=-4,A(-4,0),B(0,-3),OA=4,OB=3,AB=5,设P与直线AB相切于D,连接PD,则PDAB,PD=1,ADP=AOB=90,PAD=BAO,APDABO,AP= ,OP= 或OP= ,P或P,故选:C【点睛】本题考查切线的判定和性质,一次函数图形上点的坐标特征,相似三角形的判定和性质,正确的理解题意并运用数

12、形结合思维分析是解题的关键10、D【分析】根据反比例函数的性质,得当或者时,随着的增大而增大;根据直径所对圆周角为直角的性质,得斜边为的直角三角形顶点的轨迹是以中点为圆心,长为直径的圆;根据垂直平分线的性质,得三角形三边的垂直平分线的交点到三角形三个顶点的距离相等;根据勾股定理逆定理、完全平方公式的性质计算,可判断直角三角形,即可完成求解【详解】当或者时,随着的增大而增大,故(1)不正确;如果直角三角形斜边的长是斜边上的高的4倍,那么这个三角形两个锐角的度数分别是和;,故(2)正确;圆的直径所对的圆周角为直角斜边为的直角三角形顶点A的轨迹是以中点为圆心,长为直径的圆,故(3)正确;三角形三边的

13、垂直平分线的交点到三角形三个顶点的距离相等,故(4)正确;以为三边长度的三角形,是直角三角形,故(5)错误;故选:D【点睛】本题考查了三角形、垂直平分线、反比例函数、圆、勾股定理逆定理的知识;解题的关键是熟练掌握反比例函数、垂直平分线、圆周角、勾股定理逆定理的性质,从而完成求解二、填空题1、【分析】由正六边形ABCDEF的边长为2,可得AB=BC=2,ABC=BAF=120,进而求出BAC=30,CAE=60,过B作BHAC于H,由等腰三角形的性质和含30直角三角形的性质得到AH=CH,BH=1,在RtABH中,由勾股定理求得AH=,得到AC=2,根据扇形的面积公式即可得到阴影部分的面积【详解

14、】解:正六边形ABCDEF的边长为2, =120,ABC+BAC+BCA=180,BAC=(180-ABC)=(180-120)=30,过B作BHAC于H,AH=CH,BH=AB=2=1,在RtABH中,AH= =,AC=2 ,同理可证,EAF=30,CAE=BAF-BAC-EAF=120-30-30=60, 图中阴影部分的面积为2,故答案为:【点睛】本题考查的是正六边形的性质和扇形面积的计算、等腰三角形的性质、勾股定理,掌握扇形面积公式是解题的关键2、九9【分析】根据正多边形的每个中心角相等,且所有中心角的度数和为360进行求解即可【详解】解:设这个正多边形的边数为n,这个正多边形的中心角是

15、40,这个正多边形是九边形,故答案为:九【点睛】本题主要考查了正多边形的性质,熟知正多边形中心角的度数和为360度是解题的关键3、或【分析】根据题意分两种情况并综合利用垂径定理和勾股定理以及圆的基本性质进行分析即可求解.【详解】解:如图,连接BOAC是O的直径,弦BDAC于点E,BD12cm,,OEcm,BDAC,cm,OFBC,如图,OEcm,BDAC, ,OFBC,.故答案为:或.【点睛】本题考查圆的综合问题,熟练掌握并利用垂径定理和勾股定理以及圆的基本性质进行分析是解题的关键.注意未作图题一般情况下要进行分类作图讨论.4、(1)经过半径外端且垂直于这条半径的直线是圆的切线;(2),;(3

16、) 【分析】(1)根据切线的定义判断即可(2)由=AC+,计算即可;根据计算即可(3)根据勾股定理,得即为正方形的面积,比较与圆的面积的大小关机即可【详解】解:(1)O的直径,作射线,过点作的垂线,经过半径外端且垂直于这条半径的直线是圆的切线;故答案为:经过半径外端且垂直于这条半径的直线是圆的切线; (2)根据题意,得AC=r,=r,=AC+=r+r,=;,MA=-r=,故答案为:,; (3)如图,连接ME,根据勾股定理,得=; 故答案为:【点睛】本题考查了圆的切线的定义,勾股定理,圆的周长,正方形的面积和性质,熟练掌握圆的切线的定义,勾股定理,正方形的性质是解题的关键5、【分析】根据弓形的面

17、积=扇形的面积-三角形的面积求解即可【详解】解:如图,ACOB,圆心角为60,OA=OB,OAB是等边三角形,OC=OB=1,AC=,SOAB=OBAC=2=,S扇形OAB=,弓形(阴影部分)的面积= S扇形OAB- SOAB=,故答案为:【点睛】本题考查扇形面积、等边三角形的面积计算方法,掌握扇形面积、等边三角形的面积的计算方法以及直角三角形的边角关系是正确解答的关键三、解答题1、(1)图形见解析(2)直径所对的圆周角是直角;三边相等的三角形是等边三角形【分析】(1)根据要求作出图形即可;(2)根据圆周角定理等边三角形的判定和性质解决问题即可(1)如图,ABC即为所求作(2)AB为O的直径,

18、点C在O上,ACB=90(直径所对的圆周角是直角),连接OCOA=OC=AC,AOC为等边三角形(三边相等的三角形是等边三角形),A=60故答案为:直径所对的圆周角是直角,三边相等的三角形是等边三角形【点睛】本题考查作图-复杂作图,等边三角形的判定和性质,圆周角定理等知识,解题的关键是理解题意,灵活运用所学知识解决问题2、(1)见解析(2)CD=2【分析】(1)由题意易得BC=BD,DAM=DAF,则有CAB=DAB,进而可得BAM=90,然后问题可求证;(2)由题意易得CD/AM,ANC=OCE=30,然后可得OE=1,CE=,进而问题可求解(1)证明:AB是O的直径,弦CDAB于点EBC=

19、BDCAB=DABAM是DAF的平分线DAM=DAFCAD+DAF=180DAB+DAM=90即BAM=90,ABAMAM是O的切线(2)解:ABCD,ABAM CD/AMANC=OCE=30在RtOCE中,OC=2OE=1,CE=AB是O的直径,弦CDAB于点ECD=2CE=2【点睛】本题主要考查切线的判定定理、垂径定理及含30度直角三角形的性质,熟练掌握切线的判定定理、垂径定理及含30度直角三角形的性质是解题的关键3、【分析】过B作BDAC于D,切点分别为E、F、G,连结OE,OF,OG,根据勾股定理BD=,根据ABC面积两种求法列等式得出即可【详解】解:过B作BDAC于D,切点分别为E、

20、F、G,连结OE,OF,OG,设AD=x,CD=8-x, 其内切圆的半径为r,根据勾股定理,即,解方程得,BD=,圆是的内切圆,OEAC,OFAB,OGBC,OE=OF=OG=r,SABC=,【点睛】本题考查三角形内切圆的性质,勾股定理,三角形面积,掌握三角形内切圆的性质,勾股定理,三角形面积公式是解题关键4、(1)见解析;(2)30;(3)【分析】(1)如图所示,连接OA,则,由OA=OB,得到OAB=OBA,即可推出,即OBA+ACB=90,再由OBA=CAE,则ACB+CAE=90,由此即可证明;(2)如图所示,连接CE,则ABC=AEC,由,可得AEC=30,则ABC=30;(3)如图

21、所示,过点O作OFAB于F,则BF=AF,设FP=x,可得BP=BF+PF=6+2x,OP=2FP=2x,推出PH=OP+OH=1+2x,则BP=2+4x,从而得到2+4x=6+2x,由此求解即可【详解】解:(1)如图所示,连接OA,OA=OB,OAB=OBA,OAB+OBA+AOB=180,即OBA+ACB=90,又OBA=CAE,ACB+CAE=90,ADC=90,AEBC;(2)如图所示,连接CE,ABC=AEC,AEBC,AEC=30,ABC=30;(3)如图所示,过点O作OFAB于F,BF=AF,设FP=x,BF=AF=AP+PF=6+x,BP=BF+PF=6+2xABC=30,PH

22、BC, BPH=60,BP=2PH,又OFAB,OFP=90,POF=30,OP=2FP=2x,PH=OP+OH=1+2x,BP=2+4x,2+4x=6+2x,解得x=2,PF=2,BF=8,PO=4,圆O的半径长为【点睛】本题主要考查了圆周角定理,含30度角的直角三角形的性质,等腰三角形的性质,特殊角三角形函数值求度数,勾股定理,垂径定理等等,解题的关键在于能够正确作出辅助线求解5、(1)证明见解析;(2)证明见解析;(3)证明见解析【分析】(1)在和中,故可证明三角形相似(2)由得出(3)法一:由题意知,由得,有,所以可得,又因为可得,;由于,进而说明,得出平分法二:通过得出F、D、C、E四点共圆,由得,从而得出平分【详解】解:(1)证明在和中 (2)证明:在和中 (3)证明:又D是中点,平分法二:F、D、C、E四点共圆又D是点,平分【点睛】本题考察了相似三角形的判定,全等三角形,角平分线,圆内接四边形等知识点解题的关键与难点在于角度的转化解题技巧:多个角度相等时可考虑将几何图形放入圆中利用同弧或等弧所对圆周角相等求解

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 应用文书 > 策划方案

本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

工信部备案号:黑ICP备15003705号© 2020-2023 www.taowenge.com 淘文阁