《2022年强化训练北师大版九年级数学下册第三章-圆月考试卷(含答案详细解析).docx》由会员分享,可在线阅读,更多相关《2022年强化训练北师大版九年级数学下册第三章-圆月考试卷(含答案详细解析).docx(31页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、北师大版九年级数学下册第三章 圆月考 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、如图,O中,半径OCAB于D,且CD2,弦AB8,则O的半径的长等于( )A3B4C5D62、如图,在平面直角坐标系xO
2、y中,点A(0,3),点B(2,1),点C(2,3)则经画图操作可知:ABC的外接圆的圆心坐标是( )A(2,1)B(1,0)C(1,1)D(0,1)3、已知O的半径等于5,圆心O到直线l的距离为6,那么直线l与O的公共点的个数是( )A0B1C2D无法确定4、如图,AB是的直径,的弦DC的延长线与AB的延长线相交于点P,于点E,则阴影部分的面积为( )ABCD5、若正六边形的边长为6,则其外接圆半径与内切圆半径的大小分别为()A6,3B6,3C3,6D6,36、如图,ABC内接于O,BAC30,BC6,则O的直径等于()A10B6C6D127、如图,RtABC中,A90,B30,AC1,将R
3、tABC延直线l由图1的位置按顺时针方向向右作无滑动滚动,当A第一次滚动到图2位置时,顶点A所经过的路径的长为()ABCD(2+)8、如图,在圆中半径OC弦AB,且弦ABCO2,则图中阴影部分面积为( )ABCD9、某村东西向的废弃小路/两侧分别有一块与l距离都为20 m的宋代碑刻A,B,在小路l上有一座亭子P A,P分别位于B的西北方向和东北方向,如图所示该村启动“建设幸福新农村”项目,计划挖一个圆形人工湖,综合考虑景观的人文性、保护文物的要求、经费条件等因素,需将碑刻A,B原址保留在湖岸(近似看成圆周)上,且人工湖的面积尽可能小人工湖建成后,亭子P到湖岸的最短距离是( )A20 mB20m
4、C(20 - 20)mD(40 - 20)m10、如图,中,则等于( )ABCD第卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、是的内接正六边形一边,点是优弧上的一点(点不与点,重合)且,与交于点,则的度数为_2、已知O的直径为6cm,且点P在O上,则线段PO=_ .3、如图,直径AB为6的半圆,绕A点逆时针旋转60,此时点B到了点B,则图中阴影部分的面积是_4、在中,D,E分别是,的中点,若等腰绕点A逆时针旋转,得到等腰,记直线与的交点为P,则点P到所在直线的距离的最大值为_5、一块直角三角板的30角的顶点A落在上,两边分别交于B、C两点,若弦BC长为4,则的半径为_
5、三、解答题(5小题,每小题10分,共计50分)1、如图,AB是O的直径,点C是圆上一点,弦CDAB于点E,且DCAD,过点A作O的切线,过点C作DA的平行线,两直线交于点F,FC的延长线与AB的延长线交于点G(1)求证:FG是O的切线;(2)求证:四边形AFCD是菱形2、如图,在RtABC中,ABC90,AC的垂直平分线分别与AC,BC及AB的延长线相交于点D,E,F,且BCBF,O是BEF的外接圆,连接BD(1)证明:CABFEB;(2)试判断BD与O的位置关系,并说明理由;(3)当ABBE2时,求O的面积3、如图,为的直径,弦的延长线相交于点,且求证:4、已知:为的直径,四边形为的内接四边
6、形,分别连接、,交于点,且(1)如图1,求证:;(2)如图2,延长交的延长线于点,交于点,连接,求证:;(3)如图3,在(2)的条件下,交于点,若,求的长5、如图,AB为O的切线,B为切点,过点B作BCOA,垂足为点E,交O于点C,连接CO并延长CO与AB的延长线交于点D,连接AC(1)求证:AC为O的切线;(2)若O半径为2,OD4求线段AD的长-参考答案-一、单选题1、C【分析】根据垂径定理得出AD=BD=,设O的半径的长为x,根据勾股定理,即,解方程即可【详解】解:半径OCAB于D,弦AB8,AD=BD=,设O的半径的长为x,OD=OC-CD=x-2,在RtODB中,根据勾股定理,即,解
7、得x=5,O的半径的长为5故选择C【点睛】本题考查垂径定理,勾股定理,解拓展一元一次方程,掌握垂径定理,勾股定理,解拓展一元一次方程是解题关键2、A【分析】首先由ABC的外心即是三角形三边垂直平分线的交点,所以在平面直角坐标系中作AB与BC的垂线,两垂线的交点即为ABC的外心【详解】解:ABC的外心即是三角形三边垂直平分线的交点,如图所示:EF与MN的交点O即为所求的ABC的外心,ABC的外心坐标是(2,1)故选:A【点睛】此题考查了三角形外心的知识注意三角形的外心即是三角形三边垂直平分线的交点解此题的关键是数形结合思想的应用3、A【分析】圆的半径为 圆心到直线的距离为 当时,圆与直线相离,直
8、线与圆没有交点,当时,圆与直线相切,直线与圆有一个交点,时,圆与直线相交,直线与圆有两个交点,根据原理可得答案【详解】解:O的半径等于为8,圆心O到直线l的距离为为6,直线l与相离,直线l与O的公共点的个数为0,故选A【点睛】本题考查的是圆与直线的位置关系,圆与直线的位置关系有相离,相交,相切,熟悉三种位置关系对应的公共点的个数是解本题的关键4、B【分析】由垂径定理可知,AE=CE,则阴影部分的面积等于扇形AOD的面积,求出,然后利用扇形面积公式,即可求出答案【详解】解:根据题意,如图:AB是的直径,OD是半径,AE=CE,阴影CED的面积等于AED的面积,;故选:B【点睛】本题考查了求扇形的
9、面积,垂径定理,解题的关键是掌握所学的知识,正确利用扇形的面积公式进行计算5、B【分析】如图1,O是正六边形的外接圆,连接OA,OB,求出AOB=60,即可证明OAB是等边三角形,得到OA=AB=6;如图2,O1是正六边形的内切圆,连接O1A,O1B,过点O1作O1MAB于M,先求出AO1B60,然后根据等边三角形的性质和勾股定理求解即可【详解】解:(1)如图1,O是正六边形的外接圆,连接OA,OB,六边形ABCDEF是正六边形,AOB=3606=60,OA=OB,OAB是等边三角形,OA=AB=6;(2)如图2,O1是正六边形的内切圆,连接O1A,O1B,过点O1作O1MAB于M,六边形AB
10、CDEF是正六边形,AO1B60,O1A= O1B,O1AB是等边三角形,O1A= AB=6,O1MAB,O1MA90,AMBM,AB6,AMBM,O1M故选B【点睛】本题主要考查了正多边形与圆,等边三角形的性质与判定,勾股定理,熟知正多边形与圆的知识是解题的关键6、D【分析】连接OB,OC,根据圆周角定理求出BOC的度数,再由OB=OC判断出OBC是等边三角形,由此可得出结论【详解】解:连接OB,OC,BAC=30,BOC=60OB=OC,BC=6,OBC是等边三角形,OB=BC=6O的直径等于12故选:D【点睛】本题考查的圆周角定理,根据题意作出辅助线,构造出等边三角形是解答此题的关键7、
11、C【分析】根据题意,画出示意图,确定出点的运动路径,再根据弧长公式即可求解【详解】解:根据题意可得,RtABC的运动示意图,如下:RtABC中,A90,B30,AC1,由图形可得,点的运动路线为,先以为中心,顺时针旋转,到达点,经过的路径长为,再以为中心,顺时针旋转,到达点,经过的路径长为,顶点A所经过的路径的长为,故选:C【点睛】此题考查了旋转的性质,圆弧弧长的求解,解题的关键是根据题意确定点的运动路线8、C【分析】连接OA,OB,根据平行线的性质确定,再根据AB=CO和圆的性质确定是等边三角形,进而得出,最后根据扇形面积公式即可求解【详解】解:如下图所示,连接OA,OB,S阴=S扇形AOB
12、AO,BO,CO都是的半径,AO=BO=COAB=CO=2,AO=BO=AB=2是等边三角形S阴=S扇形AOB=故选:C【点睛】本题考查平行线的性质,等边三角形的判定定理,扇形面积公式,综合应用这些知识点是解题关键9、D【分析】根据人工湖面积尽量小,故圆以AB为直径构造,设圆心为O,当O,P共线时,距离最短,计算即可【详解】人工湖面积尽量小,圆以AB为直径构造,设圆心为O,过点B作BC ,垂足为C,A,P分别位于B的西北方向和东北方向,ABC=PBC=BOC=BPC=45,OC=CB=CP=20,OP=40,OB=,最小的距离PE=PO-OE=40 - 20(m),故选D【点睛】本题考查了圆的
13、基本性质,方位角的意义,等腰直角三角形的判定和性质,勾股定理,熟练掌握圆中点圆的最小距离是解题的关键10、C【分析】由题意直接根据圆周角定理进行分析即可得出答案.【详解】解:ABC和AOC是弧AC所对的圆周角和圆心角,ABC=AOC=.故选:C.【点睛】本题考查圆周角定理,注意掌握同弧(等弧)所对的圆周角是圆心角的一半二、填空题1、90【分析】先根据是的内接正六边形一边得,再根据圆周角性质得,再根据平行线的性质得,最后由三角形外角性质可得结论【详解】解:是的内接正六边形一边 故答案为90【点睛】本题主要考查了正多边形与圆,圆周角定理等知识,熟练掌握相关定理是解答本题的关键2、3cm【分析】根据
14、点与圆的位置关系得出:点P在O上,则即可得出答案【详解】O的直径为6cm,O的半径为3cm,点P在O上,故答案为:3cm【点睛】本题考查点与圆的位置关系:点P在O外,则,点P在O上,则,点P在O内,则3、【分析】根据阴影部分的面积以AB为直径的半圆的面积+扇形ABB的面积以AB为直径的半圆的面积,即可求解【详解】解:阴影部分的面积以AB为直径的半圆的面积+扇形ABB的面积以AB为直径的半圆的面积扇形ABB的面积,则阴影部分的面积是:,故答案为:6【点睛】本题考查扇形的面积等知识,是重要考点,掌握相关知识是解题关键4、#【分析】首先作PGAB,交AB所在直线于点G,则D1,E1在以A为圆心,AD
15、为半径的圆上,当BD1所在直线与A相切时,直线BD1与CE1的交点P到直线AB的距离最大,此时四边形AD1PE1是正方形,进而求出PG的长【详解】解:如图,作PGAB,交AB所在直线于点G,D1,E1在以A为圆心,AD为半径的圆上,当BD1所在直线与A相切时,直线BD1与CE1的交点P到直线AB的距离最大,此时四边形AD1PE1是正方形,CAB=90,AC=AB=4,D,E分别是AB,AC的中点,AD=AE1=AD1=PD1=2,则BD1=,故ABP=30,则PB=2+2,PG=PB=,故点P到AB所在直线的距离的最大值为:PG=故答案为:【点睛】本题主要考查了旋转的性质以及等腰腰直角三角形的
16、性质和勾股定理以及切线的性质等知识,根据题意得出PG的最长时P点的位置是解题关键5、4【分析】连接OB、OC,由题意易得BOC=60,则有BOC是等边三角形,然后问题可求解【详解】连接OB、OC,如图所示:A=30,BOC=60,OB=OC,BOC是等边三角形,即O的半径为4故答案为:4【点睛】本题主要考查圆周角定理,熟练掌握圆周角定理是解题的关键三、解答题1、(1)见解析;(2)见解析【分析】(1)连接OC、AC,证明ACD为等边三角形,得出ADC=DCA=DAC=60,OCD=30,由FGDA,得出DCF=180-ADC=120,则OCF=DCF-OCD=90,即FGOC,即可得出结论;(
17、2)证明AFDC,由FGDA,得出四边形AFCD是菱形【详解】(1)证明:连接OC、AC,如图所示:AB是O的直径,弦CDAB,CE=DE,AD=AC,DC=AD,DC=AD=AC,ACD为等边三角形,ADC=DCA=DAC=60,DAB=BAC=30,BOC=2BAC=60,OCD=90-60=30,FGDA,D=DCG=60,OCG=DCG+OCD=60+30=90,FGOC,OC为O的半径,FG是O的切线;(2)证明:AF与O相切,AFAG,DCAG,AFDC,FGDA,四边形AFCD为平行四边形DCAD,四边形AFCD是菱形【点睛】本题考查了切线的判定与性质,菱形的判定与性质,等边三角
18、形的性质,证明FG是O的切线是解题的关键2、(1)见解析;(2)相切,理由见解析;(3)(42)【分析】(1)利用等角的余角相等可得CF,利用角边角公理即可判定结论成立;(2)连接OB,通过计算得到OBD90,利用切线的判定定理即可得出结论;(3)连接AE,利用勾股定理可求得线段AE的长,进而可求线段BC的长,则线段BF可得,利用勾股定理可求EF2,利用圆的面积公式即可求得结论【详解】证明:(1)ABC90,EBFABC90FBEF90DFAC,ADFCDF90CDEC90DECBEF,CF在CAB和FEB中,CABFEB(ASA)解:(2)直线BD与O相切,理由:连接OB,如图,D为AC的中
19、点,ABBC,DB=DCDCBDBCOBOE,OBEOEBDECBEF,DECOBEDECC90,OBEC90,OBEDBE90即OBD90OBBDOB是圆O的半径,直线BD与O相切(3)连接AE,如图,DF是线段AC的垂直平分线,AECE,ABBE2,ABC90,AE2CEAE2BCBECE22BCBF,BF22在RtBEF中,EF2BE2BF2168O的面积(EF)2EF2(42)【点睛】本题考查了全等三角形的判定和性质,相似三角形的判定和性质,圆周角定理,勾股定理,线段的垂直平分线的性质,直角三角形的性质,等腰直角三角形的判定和性质,熟练掌握这些定理是解题的关键3、见解析【分析】如图:连
20、接AC,根据为的直径可得ACB=90,即ACBP.再根据BC=PC可知AC为BP的垂直平分线可得AB=AP,根据等腰三角形的性质得到P=B,最后由三角形外角的性质即可证明【详解】证明:如图:连接AC,AB为圆O的直径,ACB=90,即ACBP.BC=PC,AC为BP的垂直平分线,AB=AP,P=B,BAD=P+B=2P【点睛】本题主要考查了圆周角定理、垂直平分线的判定与性质、三角形外角的性质等知识点,根据题意作出辅助线、构造出圆周角是成为解答本题的关键4、(1)见解析;(2)见解析;(3)【分析】(1)根据在同圆中弦相等所对的圆周角相等证明DE/AC,再证明,即可证得结论;(2)根据三角形外角
21、的性质可证得结论;(3)连接AB,由圆周角定理得,设,得,再证明,证明得,通过解直角三角形求出a的值和,再证明,根据相似三角形的性质可得出,根据可得结论【详解】解:(1)证明:DE/为的直径,即(2)证明:是DEG的外角, (3)连接AB,如图,BD是的直径在中,设,则,由勾股定理得: 和所对的弧都是 在和中 在中, 在中, 由勾股定理得, ,在中, BHM=BED=90,HBM=EBD ,即解得,【点睛】本题考查了与圆有关的综合题,相似三角形的判定和性质以及解直角三角形等知识,解题的关键是学会添加常用辅助线,利用相似三角形解决问题,学会利用参数解决问题5、(1)见解析;(2)4【分析】(1)连接OB,证明AOBAOC(SSS),可得ACOABO90,即可证明AC为O的切线;(2)在RtBOD中,勾股定理求得BD,根据sinD,代入数值即可求得答案【详解】解:(1)连接OB,AB是O的切线,OBAB,即ABO90,BC是弦,OABC,CEBE,ACAB,在AOB和AOC中,AOBAOC(SSS),ACOABO90,即ACOC,AC是O的切线;(2)在RtBOD中,由勾股定理得,BD2,sinD,O半径为2,OD4,解得AC2,ADBD+AB4【点睛】本题考查了切线的性质与判定,正弦的定义,三角形全等的性质与判定,勾股定理,掌握切线的性质与判定是解题的关键