《2021-2022学年度北师大版九年级数学下册第三章-圆月考试题(含答案解析).docx》由会员分享,可在线阅读,更多相关《2021-2022学年度北师大版九年级数学下册第三章-圆月考试题(含答案解析).docx(32页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、北师大版九年级数学下册第三章 圆月考 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、下列说法正确的是( )A弧长相等的弧是等弧B直径是最长的弦C三点确定一个圆D相等的圆心角所对的弦相等2、如图,中,点是边
2、上一动点,连接,以为直径的圆交于点若长为4,则线段长的最小值为( )ABCD3、如图,点A、B、C在O上,BAC56,则BOC的度数为( )A28B102C112D1284、如图,在半径为5的圆O中,AB,CD是互相垂直的两条弦,垂足为P,且AB=CD=8,则OP的长为( )A3B4CD5、如图,点A,B,C在O上,若ACB40,则AOB的度数为()A40B45C50D806、若正六边形的边长为6,则其外接圆半径与内切圆半径的大小分别为()A6,3B6,3C3,6D6,37、如图,面积为18的正方形ABCD内接于O,则O的半径为( )ABC3D8、如图,AB是O的直径,弦,则阴影部分图形的面积
3、为( )ABCD9、如图,中,则等于( )ABCD10、如图,等边ABC内接于O,D是上任一点(不与B、C重合),连接BD、CD,AD交BC于E,CF切O于点C,AFCF交O于点G下列结论:ADC60;DB2DEDA;若AD2,则四边形ABDC的面积为;若CF2,则图中阴影部分的面积为正确的个数为()A1个B2个C3个D4个第卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、如图,为的外接圆,则直径长为_2、已知O的半径为10,直线AB与O相切,则圆心O到直线AB的距离为_3、小明烘焙了几款不同口味的饼干,分别装在同款的圆柱形盒子中为区别口味,他打算制作“* 饼干”字样的矩
4、形标签粘贴在盒子侧面为了获得较好的视觉效果,粘贴后标签上边缘所在弧所对的圆心角为90(如图)已知该款圆柱形盒子底面半径为6 cm,则标签长度l应为_ cm(取3.1)4、如图,AB是半圆O的直径,点D在半圆O上,C是弧BD上的一个动点,连接AC,过D点作于H连接BH,则在点C移动的过程中,线段BH的最小值是_5、如图,五边形是的内接正五边形,则的度数是_三、解答题(5小题,每小题10分,共计50分)1、如图,在ABC中,以AB为直径的O交BC于点D,与CA的延长线交于点E,O的切线DF与AC垂直,垂足为F(1)求证:ABAC(2)若CF2AF,AE4,求O的半径2、如图,为的直径,为的切线,弦
5、,直线交的延长线于点,连接求证:(1);(2)3、已知:如图,射线求作:,使得点在射线上,作法:在射线上任取一点;以点为圆心,的长为半径画圆,交射线于另一点;以点为圆心,的长为半径画弧,在射线上方交于点;连接、(1)使用直尺和圆规,依作法补全图形(保留作图痕迹);(2)完成下面的证明证明:为的直径,点在上,(_)(填推理依据)连接,为等边三角形(_)(填推理依据)所以为所求作的三角形4、如图,在RtABC中,点O在斜边AB上,以O为圆心,OB为半径作圆,分别与BC,AB相交于点D,E,连接AD已知(1)求证:AD是O的切线(2)若OB2,CAD30,则的长为 5、如图,AC是O的弦,过点O作O
6、POC交AC于点P,在OP的延长线上取点B,使得BABP(1)求证:AB是O的切线;(2)若O的半径为4,PC,求线段AB的长-参考答案-一、单选题1、B【分析】利用圆的有关性质、等弧的定义、确定圆的条件及圆心角定理分别判断后即可确定正确的选项【详解】解:、能够完全重合的弧是等弧,故错误,是假命题,不符合题意;、直径是圆中最长的弦,正确,是真命题,符合题意;、不在同一直线上的三点确定一个圆,故错误,是假命题,不符合题意;、同圆或等圆中,相等的圆心角所对的弧相等,所对的弦也相等,故原命题错误,是假命题,不符合题意;故选:B【点睛】本题考查了命题与定理的知识,解题的关键是了解圆的有关性质、等弧的定
7、义、确定圆的条件及圆心角定理,难度不大2、D【分析】如图,连接 由为直径,证明在以的中点为圆心,为直径的上运动,连接 交于点 则此时最小,再利用锐角的正弦与勾股定理分别求解,即可得到答案.【详解】解:如图,连接 由为直径, 在以的中点为圆心,为直径的上运动,连接 交于点 则此时最小, , 故选D【点睛】本题考查的是勾股定理的应用,圆外一点与圆的最短距离的理解,锐角的正弦的应用,掌握“圆外一点与圆的最短距离求解线段的最小值”是解本题的关键.3、C【分析】直接由圆周角定理求解即可【详解】解:A56,A与BOC所对的弧相同,BOC2A112,故选:C【点睛】此题考查了圆周角定理,熟练掌握圆周角定理是
8、解答本题的关键,同圆或等圆中,同弧或等弧所对的圆周角等于这条弧所对的圆心角的一半4、D【分析】作OMAB于M,ONCD于N,根据垂径定理、勾股定理得:OM=ON=4,再根据四边形MONP是正方形,故可求解【详解】作OMAB于M,ONCD于N,连接OB,OD,OB=5,BM= ,OM=AB=CD=8,ON=OM=4,弦AB、CD互相垂直,DPB=90,OMAB于M,ONCD于N,OMP=ONP=90四边形MONP是矩形,OM=ON,四边形MONP是正方形,OP=3故选C【点睛】本题考查了垂径定理及勾股定理的知识,解题的关键是正确地作出辅助线5、D【分析】由ACB=40,根据在同圆或等圆中,同弧或
9、等弧所对的圆周角等于这条弧所对的圆心角的一半,即可求得AOB的度数【详解】解:ACB=40,AOB=2ACB=80故选:D【点睛】本题考查了圆周角定理此题比较简单,解题的关键是掌握在同圆或等圆中,同弧或等弧所对的圆周角等于这条弧所对的圆心角的一半定理的应用6、B【分析】如图1,O是正六边形的外接圆,连接OA,OB,求出AOB=60,即可证明OAB是等边三角形,得到OA=AB=6;如图2,O1是正六边形的内切圆,连接O1A,O1B,过点O1作O1MAB于M,先求出AO1B60,然后根据等边三角形的性质和勾股定理求解即可【详解】解:(1)如图1,O是正六边形的外接圆,连接OA,OB,六边形ABCD
10、EF是正六边形,AOB=3606=60,OA=OB,OAB是等边三角形,OA=AB=6;(2)如图2,O1是正六边形的内切圆,连接O1A,O1B,过点O1作O1MAB于M,六边形ABCDEF是正六边形,AO1B60,O1A= O1B,O1AB是等边三角形,O1A= AB=6,O1MAB,O1MA90,AMBM,AB6,AMBM,O1M故选B【点睛】本题主要考查了正多边形与圆,等边三角形的性质与判定,勾股定理,熟知正多边形与圆的知识是解题的关键7、C【分析】连接OA、OB,则为等腰直角三角形,由正方形面积为18,可求边长为,进而通过勾股定理,可得半径为3【详解】解:如图,连接OA,OB,则OA=
11、OB,四边形ABCD是正方形,是等腰直角三角形,正方形ABCD的面积是18,即:故选C【点睛】本题考查了正多边形和圆、正方形的性质等知识,构造等腰直角三角形是解题的关键8、D【分析】根据垂径定理求得CE=ED=;然后由圆周角定理知COE=60然后通过解直角三角形求得线段OC,然后证明OCEBDE,得到求出扇形COB面积,即可得出答案【详解】解:设AB与CD交于点E,AB是O的直径,弦CDAB,CD=2,如图,CE=CD=,CEO=DEB=90,CDB=30,COB=2CDB=60,OCE=30,又,即,在OCE和BDE中,OCEBDE(AAS),阴影部分的面积S=S扇形COB=,故选D【点睛】
12、本题考查了垂径定理、含30度角的直角三角形的性质,全等三角形的性质与判定,圆周角定理,扇形面积的计算等知识点,能知道阴影部分的面积=扇形COB的面积是解此题的关键9、C【分析】由题意直接根据圆周角定理进行分析即可得出答案.【详解】解:ABC和AOC是弧AC所对的圆周角和圆心角,ABC=AOC=.故选:C.【点睛】本题考查圆周角定理,注意掌握同弧(等弧)所对的圆周角是圆心角的一半10、C【分析】如图1,ABC是等边三角形,则ABC60,根据同弧所对的圆周角相等ADCABC60,所以判断正确;如图1,可证明DBEDAC,则,所以DBDCDEDA,而DB与DC不一定相等,所以判断错误;如图2,作AH
13、BD于点H,延长DB到点K,使BKCD,连接AK,先证明ABKACD,可证明S四边形ABDCSADK,可以求得SADK,所以判断正确;如图3,连接OA、OG、OC、GC,由CF切O于点C得CFOC,而AFCF,所以AFOC,由圆周角定理可得AOC120,则OACOCA30,于是CAGOCA30,则COG2CAG60,可证明AOG和COG都是等边三角形,则四边形OABC是菱形,因此OACG,推导出S阴影S扇形COG,在RtCFG中根据勾股定理求出CG的长为4,则O的半径为4,可求得S阴影S扇形COG,所以判断正确,所以这3个结论正确【详解】解:如图1,ABC是等边三角形,ABC60,等边ABC内
14、接于O,ADCABC60,故正确;BDEACB60,ADCABC60,BDEADC,又DBEDAC,DBEDAC,,DBDCDEDA,D是上任一点,DB与DC不一定相等,DBDC与DB2也不一定相等,DB2与DEDA也不一定相等,故错误;如图2,作AHBD于点H,延长DB到点K,使BKCD,连接AK,ABK+ABD180,ACD+ABD180,ABKACD,ABAC,ABKACD(SAS),AKAD,SABKSACD,DHKHDK,AHD90,ADH60,DAH30,AD2,DHAD1, DK2DH2,SADK,S四边形ABDCSABD+SACDSABD+SABKSADK,故正确;如图3,连接
15、OA、OG、OC、GC,则OAOGOC,CF切O于点C,CFOC,AFCF,AFOC,AOC2ABC120,OACOCA(180120)30,CAGOCA30,COG2CAG60,AOG60,AOG和COG都是等边三角形,OAOCAGCGOG,四边形OABC是菱形,OACG,SCAGSCOG,S阴影S扇形COG,OCF90,OCG60,FCG30,F90,FGCG,FG2+CF2CG2,CF,(CG)2+()2CG2,CG4,OCCG4,S阴影S扇形COG,故正确,这3个结论正确,故选C【点睛】本题主要考查了等边三角形的性质与判定,圆切线的性质,圆周角定理,全等三角形的性质与判定,菱形的性质与
16、判定,勾股定理,含30度角的直角三角形的性质等等,解题的关键在于能够熟练掌握相关知识进行求解二、填空题1、4【分析】连接OA、OB,根据圆周角定理得出AOB=60,证明AOB为等边三角形,进而求出直径【详解】解:连接OA、OB,AOB=60,OA=OB,AOB为等边三角形,OA=OB=2,则直径长为4;故答案为4【点睛】本题考查了圆周角的性质和等边三角形的性质与判定,解题关键是连接半径,证明三角形是等边三角形2、10【分析】根据直线AB和圆相切,则圆心到直线的距离等于圆的半径即可得问题答案【详解】解:O的半径为10,直线AB与O相切,圆心到直线AB的距离等于圆的半径,d=10;故答案为:10;
17、【点睛】本题考查了直线与圆的位置关系;熟记直线和圆的位置关系与数量之间的联系是解决问题的关键同时注意圆心到直线的距离应是非负数3、9.3【分析】根据弧长公式进行计算即可,【详解】解:粘贴后标签上边缘所在弧所对的圆心角为90,底面半径为6 cm,cm,故答案为:【点睛】本题考查了弧长公式,牢记弧长公式是解题的关键4、#【分析】连接,取的中点,连接,由题可知点在以为圆心,为半径的圆上,当、三点共线时,最小;求出,在中,所以,即为所求【详解】解:连接,取的中点,连接,点在以为圆心,为半径的圆上,当、三点共线时,最小,是直径,在中,故答案为:【点睛】本题考查点的运动轨迹,勾股定理,解题的关键是能够根据
18、点的运动情况,确定点的运动轨迹5、【分析】根据圆内接正五边形的定义求出COD,利用三角形内角和求出答案【详解】解:五边形是的内接正五边形,COD=,OC=OD,=,故答案为:【点睛】此题考查了圆内接正五边形的性质,三角形内角和定理,同圆的半径相等的性质,熟记圆内接正五边形的性质是解题的关键三、解答题1、(1)证明见解析;(2)的半径为6【分析】(1)根据圆切线的性质可得,然后根据等腰三角形的等边对等角以及等角对等边可得出结论;(2)根据圆周角定理以及等腰三角形的判定与性质可得结果【详解】解:(1)证明:如图,连接是的切线,(2)如图,连接,则由(1)知,的半径为6【点睛】本题考查了圆切线的性质
19、,圆周角定理,等腰三角形的性质与判定,平行线的判定与性质,熟练掌握相关性质定理是解本题的关键2、(1)见解析;(2)见解析【分析】(1)连接,根据,可证从而可得,即可证明,故;(2)证明,可得,即可证明【详解】证明:(1)连接,如图:为的直径,为的切线,在和中,为的直径,即, ,即,;(2)由(1)知:,又, ,【点睛】本题考查圆中的相似三角形判定与性质,涉及三角形全等的判定与性质,解题的关键是证明,从而得到3、(1)图形见解析(2)直径所对的圆周角是直角;三边相等的三角形是等边三角形【分析】(1)根据要求作出图形即可;(2)根据圆周角定理等边三角形的判定和性质解决问题即可(1)如图,ABC即
20、为所求作(2)AB为O的直径,点C在O上,ACB=90(直径所对的圆周角是直角),连接OCOA=OC=AC,AOC为等边三角形(三边相等的三角形是等边三角形),A=60故答案为:直径所对的圆周角是直角,三边相等的三角形是等边三角形【点睛】本题考查作图-复杂作图,等边三角形的判定和性质,圆周角定理等知识,解题的关键是理解题意,灵活运用所学知识解决问题4、(1)见解析;(2)【分析】(1)连接OD,由OD=OB,利用等边对等角得到,再由已知角相等,等量代换得到1=3,求出4为90,即可得证;(2)首先根据题意得到,进而求出的度数,然后利用扇形的弧长公式求解即可【详解】(1)证明:连接,在中,则为圆
21、的切线;(2)CAD30,由(1)可得,OB2,【点睛】此题考查了切线的判定与性质,扇形的弧长公式,熟练掌握切线的判定与性质以及扇形的弧长公式是解本题的关键5、(1)见解析;(2)【分析】(1)先根据等腰三角形的性质可得BPABAP、OACOCA再运用等量代换说明OAB90,即可证明结论;(2)先由勾股定理可得OP=2, 设ABx,则OBx2在RtAOB中运用勾股定理列方程解答即可【详解】解:(1)证明:BABP,BPABAPOAOC,OACOCAOPOC,COP90OPCOCP90APBOPC,BAPOAC90即OAB90,OAABOA为半径,AB为O的切线;(2)在RtOPC中,OC4,PC,OP2设ABx,则OBx2在RtAOB中,x3,即AB3【点睛】本题主要考查了圆的性质、圆的切线证明、勾股定理等知识点,灵活运用相关性质、定理成为解答本题的关键