《难点详解北师大版八年级数学下册第五章分式与分式方程专题测评试卷(含答案解析).docx》由会员分享,可在线阅读,更多相关《难点详解北师大版八年级数学下册第五章分式与分式方程专题测评试卷(含答案解析).docx(16页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、北师大版八年级数学下册第五章分式与分式方程专题测评 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、关于x的分式方程的解是正数,则字母m的取值范围是( )ABC且D且2、下列分式的变形正确的是()ABx+y
2、CD(ab)3、华华同学借了一本书,共280页,要在1周借期内读完当他读了一半时,发现平均每天要多读21页才能在借期内读完他读前一半时,平均每天读多少页?如果设读前一半时,平均每天读页,则下面所列方程中,正确的是( )ABCD4、要使式子值为0,则()Aa0Bb0C5abD5ab且b05、关于x的方程的解为整数且关于x的不等式组的解集为则满足条件的所有整数a值之和为( )A5B3C4D06、下列等式成立的是()ABCD7、5G是第五代移动通信技术,应用5G网络下载一个1000KB的文件只需要0.00076秒,下载一部高清电影只需要1秒将0.00076用科学记数法表示应为( )ABCD8、雾是由
3、悬浮在大气中微小液滴构成的气溶胶,雾滴的直径多为0.000004m0.00003m其中,0.000004用科学记数法表示为( )A4106B4107C410-6D410-79、若分式有意义,则x的取值范围是( )ABCD10、如果把中的和都扩大到原来的5倍,那么分式的值( )A扩大到原来的5倍B不变C缩小为原来的D无法确定第卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、若分式的值为零,则x_2、当_时,分式的值为3、当_时,分式无意义4、若在实数范围内有意义,则的取值范围是_5、 “有一种速度叫中国速度,有一种骄傲叫中国高铁”快速发展的中国高速铁路,正改变着中国人的出行
4、方式下表是从北京到上海的两次列车的相关信息:出行方式出发站到达站路程平均速度特快列车T109北京上海全程1463km98 km/h高铁列车G27北京南上海虹桥全程1325kmx km/h已知从北京到上海乘坐G27次高铁列车比T109次特快列车用时少10小时26分钟设G27次高铁列车的平均速度为x km/h,根据题意可列方程为_三、解答题(5小题,每小题10分,共计50分)1、化简:2、先化简,再求值:,其中a2,b13、先化简,再求值:,其中4、列分式方程解应用题:某种型号的LED显示屏为长方形,其长与宽的比为;若将该显示屏的长、宽各减少2cm,则其长与宽的比值将会变为求该型号LED显示屏的长
5、度与宽度5、在分式中,若M,N为整式,分母M的次数为a,分子N的次数为b(当N为常数时,),则称分式为次分式例如,为三次分式(1)请写出一个只含有字母的二次分式_;(2)已知,(其中m,n为常数)若,则,中,化简后是二次分式的为_;若A与B的和化简后是一次分式,且分母的次数为1,求的值-参考答案-一、单选题1、A【分析】解分式方程,得到含字母m的方程,解此方程,再根据该方程的解是整数,结合分式方程的分母不为零,得到两个关于字母m的不等式,解之即可【详解】解:方程两边同时乘以(x+1),得到因为分式方程的解是正数, 故选:A【点睛】本题考查分式方程的解、解一元一次不等式等知识,难度较易,掌握相关
6、知识是解题关键2、C【分析】根据分式的基本性质判断即可【详解】解:A选项中不能分子分母不能约分,故该选项不合题意;B选项中分子和分母没有公因式,故该选项不合题意;C选项中分子和分母都乘5,分式的值不变,故该选项符合题意;D选项中分子乘a,分母乘b,ab,故该选项不合题意;故选:C【点睛】本题考查了分式的基本性质,把分式的分子与分母都乘以(或除以)同一个不等于零的整式,分式的值不变3、C【分析】根据相等关系:读前一半所用的天数+读后一半所用的天数=7,即可列出方程得到答案【详解】读前一半所用的天数为:天,读后一半所用的天数为:天根据题意得:故选:C【点睛】本题考查了分式方程的应用,关键是理解题意
7、,找到等量关系并列出方程4、D【分析】根据分式有意义的条件,即可求解【详解】解:根据题意得: 且 , 且 故选:D【点睛】本题主要考查了,熟练掌握分式有意义的条件是分式的分子等于0且分母不等于0是解题的关键5、B【分析】(1)先解分式方程得,由于解是整数,故可推出的值,解不等式,由于解集为,即可确定的可能值,相加即可得出答案【详解】解分式方程得:,为整数,且,可为,-3,由得:,由得:,解集为,解得:,整数可为,故选:B【点睛】本题考查解分式方程和一元一次不等式组,掌握求解的步骤是解题的关键6、C【分析】直接根据分式的性质进行判断即可【详解】解:A. ,故选项A不符合题意;B,故选项B不符合题
8、意;C. ,故选项C符合题意;D. ,故选项D不符合题意;故选C【点睛】本题主要考查了分式性质的应用,熟练掌握分式性质是解答本题的关键7、B【分析】根据题意依据绝对值小于1的正数利用科学记数法表示为a10-n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定进行分析即可【详解】解:0.00076=.故选:B.【点睛】本题考查用科学记数法表示较小的数,注意掌握一般形式为a10-n,其中1|a|10,n为由原数左边起第一个不为零的数字前面的0的个数决定8、C【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a10-n,与较大数的科
9、学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定【详解】0.000004=410-6故选:C【点睛】本题考查用科学记数法表示较小的数,一般形式为a10-n,其中1|a|10,n为由原数左边起第一个不为零的数字前面的0的个数所决定9、D【分析】根据分式有意义的条件是分母不为0列不等式求解【详解】解:分式有意义,解得:,故选D【点睛】本题主要考查了分式有意义的条件,熟知分式有意义的条件是解题的关键10、A【分析】把分式中的x与y分别用5x与5y代替,再化简即可判断【详解】分式中的x与y分别用5x与5y代替后,得,由此知,此时分式的值扩大到原来的5倍故选:
10、A【点睛】本题考查了分式的基本性质,一般地,本题中把x与y均扩大n倍,则分式的值也扩大n倍二、填空题1、-3【分析】由已知可得,分式的分子为零,分母不为零,由此可得x2-9=0,x-30,解出x即可【详解】解:分式的值为零,x2-9=0,且x-30,解得x=-3故答案为:-3【点睛】本题考查了分式的值为零的条件,分式值为零的条件是分子等于零且分母不等于零2、-12【分析】分式的值为零,则分子为零但分母不为零,根据此结论即可求得x的值【详解】分式的值为,且解得:,且故答案为:【点睛】本题考查了分式的值为零的条件,关键是掌握分式的概念一定要验证分母的值是否为零3、【分析】分式无意义的条件是分母等于
11、0,根据分母等于0,列出方程,求出的值即可【详解】分式无意义, , 故答案为:【点睛】本题主要是考查了分式无意义的条件,掌握“分式的分母为0,分式无意义”是解决本题的关键4、且【分析】根据分母不等于0,且被开方数是非负数列式求解即可【详解】由题意得且解得且故答案为:且【点睛】本题考查了代数式有意义时字母的取值范围,代数式有意义时字母的取值范围一般从几个方面考虑:当代数式是整式时,字母可取全体实数;当代数式是分式时,考虑分式的分母不能为0;当代数式是二次根式时,被开方数为非负数5、【分析】由题意直接依据从北京到上海乘坐G27次高铁列车比T109次特快列车用时少10小时26分钟建立分式方程即可.【
12、详解】解:由题意设G27次高铁列车的平均速度为x km/h,可得.故答案为:.【点睛】本题考查分式方程的实际应用,读懂题意并根据题干所给定的等量关系建立方程是解题的关键.三、解答题1、-2【分析】根据分式的乘除运算法则计算即可【详解】解:原式【点睛】本题考查分式的乘除运算,熟练掌握该知识点是解题关键2、,.【分析】由题意先分式的混合运算法则进行化简,进而代入求值即可得出答案.【详解】解:将a2,b1代入.【点睛】本题考查分式的化简求值,能够熟练掌握分式的化简运算的方法是解题的关键3、;【分析】先将除法转化为乘法,同时将分子分母因式分解,进而根据分式的性质化简,再将x=3代入化简后的结果【详解】
13、解:原式,当时原式【点睛】本题考查了分式的化简求值,掌握分式的性质与因式分解是解题的关键4、长度为8cm,宽度为6cm【分析】设LED显示屏的长为cm,则宽为cm,根据题意列出方程,解方程即可解决问题,注意分式方程应检验【详解】解:设LED显示屏的长为cm,则宽为cm.根据题意列方程得解得:.经检验,是原方程的解则,答:该LED显示屏的长度为8cm,宽度为6cm.【点睛】本题考查了分式方程的应用,根据题意列出分式方程是解题的关键5、(1)(不唯一);(2),;或【分析】(1)理解新定义,直接根据作答即可;(2)把,代入计算,化简后根据新定义进行判断即可;先求解 根据和为一次分式且分母的次数为1,可得分子是一次多项式,且含有或的因式,从而可列方程再解方程求解的值,于是可得答案.【详解】解:(1)根据定义可得:这个二次分式为:(不唯一)(2) , 化简后是二次分式; 所以不是二次分式; 所以不是二次分式; 所以是二次分式; , A与B的和化简后是一次分式,且分母的次数为1,且或且解得:或 或【点睛】本题考查的是分式的加减法,乘法以及乘方运算,新定义运算,理解新定义,按照新定义的规定进行判断是解本题的关键.