《难点解析京改版九年级数学下册第二十四章-投影、视图与展开图综合测试练习题.docx》由会员分享,可在线阅读,更多相关《难点解析京改版九年级数学下册第二十四章-投影、视图与展开图综合测试练习题.docx(21页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、九年级数学下册第二十四章 投影、视图与展开图综合测试 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、下列图形经过折叠不能围成棱柱的是( )ABCD2、如图是一个正方体的平面展开图,把展开图折叠成正方体后,
2、“红”字的面的对面上的字是( ) A传B因 C承D基3、如图,一路灯距地面5.6米,身高1.6米的小方从距离灯的底部(点O)5米的A处,沿OA所在的直线行走到点C时,人影长度增长3米,小方行走的路程AC()A7.2B6.6C5.7D7.54、某几何体从三个方向看到的平面图形都相同,这个几何体可以是( )ABCD5、下面那个图形经过折叠不能得到一个正方体( )ABCD6、如图所示,矩形纸片ABCD中,AB4cm,把它分割成正方形纸片ABFE和矩形纸片EFCD后,分别裁出扇形ABF和半径最大的圆,恰好能作为一个圆锥的侧面和底面,则AD的长为()A8cmB7cmC6cmD5cm7、如图是一个立方体的
3、展开图,那么在原立方体上,“南”字对面的字是()A学B子C加D油8、如图是由4个相同的小长方体组成的立体图形和它的主视图,则它的俯视图为()ABCD9、如图是一个几何体的实物图,则其主视图是( )ABCD10、如图,这个几何体是将一个正方体中间挖出一个圆柱体后的剩余部分,该几何体的主视图是( )ABCD第卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、找出与图中几何体对应的从三个方向看到的图形,并在横线上填上对应的序号 2、如图所示是从不同的方向观察一个圆柱体得到的形状图,由图中数据计算此圆柱体的侧面积为_(结果保留) 从正面看 从左面看 从上面看3、用一些完全相同的正方
4、体木块搭几何体,从其正面和上面看到的形状图如图所示,则搭成这个几何体所用正方体木块的个数最少为_4、已知正方体的一个表面展开图如图所示,则原正方体上“城”的对面的汉字是在_5、如图所示是某种型号的正六角螺母毛坯的三视图,则左视图的面积为_ 三、解答题(5小题,每小题10分,共计50分)1、(1)已知图1是由大小相同的小立方块搭成的几何体,请在图2的方格中分别画出从左面和从上面看到的该几何体的形状图(请依照从正面看的范例画图); (2)若要用大小相同的小立方块搭一个几何体,使得它从左面和从上面看到的形状图与你在图2方格中所画的形状图相同,则搭这样的一个几何体至少需要 个小立方块2、我们从不同的方
5、向观察同一物体时,可以看到不同的平面图形,如图是一个由7个相同的小正方体搭成的几何体,请从图的正面、左面和上面看这个几何体,并在所给的图中画出各自的图形3、吴老师在与同学进行“蚂蚁怎样爬最近”的课题研究时设计了以下三个问题,请你根据下列所给的条件分别求出蚂蚁需要爬行的最短路径长(1)如图1,正方体的棱长为5cm,一只蚂蚁欲从正方体底面上的点A沿正方体表面爬到点C1处;(2)如图2,长方体底面是边长为5cm的正方形,高为6cm,一只蚂蚁欲从长方体底面上的点A沿长方体表而爬到点C1处;(3)如图3,是一个底面周长为10cm,高为5cm的圆柱体,一只蚂蚁欲从圆柱体底面上的点A沿圆柱体侧面爬到点C处4
6、、如图,在平整的地面上,若干个棱长都为的小正方体堆成一个几何体(1)在网格中,用实线画出从正面,上面,左面看到的形状图;(2)求这个几何体的体积和表面积5、用若干个小立方块搭一几何体,使它从正面看和从上面看得到的图形如图所示从上面看得到的图形中小正方形里的字母表示在该位置小立方块的个数请问:(1)表示几?这个几何体由几个小立方块搭成?(2)画出该几何体从左面看得到的图形-参考答案-一、单选题1、D【分析】根据题意由平面图形的折叠及棱柱的展开图逐项进行判断即可【详解】解:A可以围成四棱柱,B可以围成三棱柱,C可以围成五棱柱,D选项侧面上多出一个长方形,故不能围成一个三棱柱故选:D【点睛】本题考查
7、立体图形的展开图,熟记常见立体图形的表面展开图的特征是解决此类问题的关键2、D【分析】正方体的表面展开图,相对的面之间一般情况相隔一个正方形,根据这一特点作答【详解】解:正方体的表面展开图,相对的面之间一般情况相隔一个正方形,“传”与“因”是相对面,“承”与“色”是相对面,“红”与“基”是相对面故选:D【点睛】本题主要考查了正方体相对两个面上的文字,注意正方体是空间图形,从相对面入手,分析及解答问题3、D【分析】设出影长AB的长,利用相似三角形可以求得AB的长,然后在利用相似三角形求得AC的长即可【详解】解:AEOD,OGOD,AE/OG,AEB=OGB,EAB=GOB,AEBOGB,即 ,解
8、得:AB2m;OA所在的直线行走到点C时,人影长度增长3米,DCAB+3=5m,OD=OA+AC+CD=AC+10,FCGO,CFD=OGD,FCD=GOD,DFCDGO,即,解得:AC7.5m所以小方行走的路程为7.5m故选择:D【点睛】本题主要考查的是相似三角形在实际中的中心投影的应用,掌握相似三角形判断与性质,利用对应边成比例是解答本题的关键4、C【分析】根据三视图判断即可;【详解】的左视图、主视图是三角形,俯视图是圆,故A不符合题意;的左视图、主视图是长方形,俯视图是三角形,故B不符合题意;的主视图、左视图、俯视图都是正方形,故C符合题意;的左视图、主视图是长方形,俯视图是圆,故D不符
9、合题意;故选C【点睛】本题主要考查了几何体三视图的判断,准确分析是解题的关键5、D【分析】根据正方体展开图的常见形式作答即可【详解】解:由展开图可知:A、B、C能围成正方体,不符合题意;D、围成几何体时,有两个面重合,故不能围成正方体,符合题意故选:D【点睛】本题考查了展开图折叠成几何体熟记能组成正方体的“一,四,一”“三,三”“二,二,二”“一,三,二”的基本形态是解题的关键6、C【分析】可求得扇形弧长,则它等于圆锥底面圆的周长,从而可求得圆的半径,则可知DE的长,从而可得AD的长【详解】解:AB=4cm,ABBF的弧长 设圆的半径为r,则2r=2r=1由题意得:DE=2cm四边形ABEF为
10、正方形AE=AB=4cmAD=AE+DE=4+2=6(cm)故选:C【点睛】本题考查了正方形的性质,弧长及圆周长的计算,关键是抓住圆锥的侧面展开图是扇形,其弧长等于底面圆的周长7、B【分析】根据正方体的表面展开图,相对的面之间相隔一个正方形,即可求解【详解】解:根据题意得:“南”与“子”是相对面故选:B【点睛】本题主要考查了正方体的表面展开图,熟练掌握相对的面之间相隔一个正方形是解题的关键8、C【分析】先根据主视图可得出观察这个立体图形的正面,再根据俯视图的定义(从上面观察物体所得到的图形叫做俯视图)即可得【详解】解:由题意得:观察这个立体图形的正面如下:则它的俯视图为故选:C【点睛】本题考查
11、了三视图,掌握理解俯视图的定义是解题关键9、C【分析】找到从正面看所得到的图形即可【详解】解:从正面看可得到一个矩形和一个下底和矩形相邻的梯形的组合图故选:C【点睛】本题考查了三视图的知识,主视图是从物体的正面看得到的视图10、A【分析】根据主视图的概念求解即可【详解】解:由题意可得,该几何体的主视图是:故选:A【点睛】此题考查了几何体的主视图,解题的关键是熟练掌握几何体主视图的概念二、填空题1、【分析】在正面得到由前到后观察物体的视图叫主视图,在水平面得到由上到下观察物体的视图叫俯视图,在侧面得到由左到右观察物体的视图叫左视图,根据三视图的定义求解即可【详解】根据三视图的定义可知:第一个三视
12、图所对应的几何体为;第二个三视图所对应的几何体为;第三个三视图对应的几何体为;第四个三视图对应的几何体为;故答案为:【点睛】本题考查三视图,熟知三视图的定义是解题的关键2、【分析】根据主视图确定出圆柱体的底面直径与高,然后根据圆柱体的侧面积公式列式计算即可得解【详解】解:由图可知,圆柱体的底面直径为2,高为3,所以,侧面积故答案为:【点睛】本题考查了立体图形的三视图和学生的空间想象能力,圆柱体的侧面积公式,解题的关键是根据主视图判断出圆柱体的底面直径与高3、7【分析】由主视图和左视图确定左视图的形状,再判断最少的正方体的个数即可【详解】解:由题中所给出的主视图知物体共3列,且最高两层的有2列,
13、一层的有一列;由俯视图知共5列,所以小正方体的个数最少的几何体为:2+2+1+1+1=7个故答案为:7【点睛】考查学生对三视图的掌握程度和灵活运用能力,同时也体现了对空间想象能力方面的考查如果掌握口诀“俯视图打地基,主视图疯狂盖,左视图拆违章”就更容易得到答案4、文【分析】根据正方体的表面展开图,相对的面的中间相隔一个面,即可求解【详解】解:根据题意得:原正方体上“城”的对面的汉字是“文”故答案为:文【点睛】本题主要考查了正方体的表面展开图,熟练掌握相对的面的中间相隔一个面是解题的关键5、【分析】如图,连接过作于再求解 再确定左视图是长方形,两边分别为3cm,cm,从而可得答案.【详解】解:如
14、图,连接过作于 由俯视图可得: 由主视图可得:正六角螺母毛坯的高为:3cm, 左视图的面积为 故答案为:【点睛】本题考查的是三视图,左视图的面积的计算,掌握“左视图是长方形”是解本题的关键.三、解答题1、(1)见解析;(2)6【分析】(1)从上面看得到从左往右3列正方形的个数依次为2,2,1,依此画出图形即可;从左面看得到从左往右2列正方形的个数依次为2,1;依此画出图形即可;(2)由俯视图易得最底层小立方块的个数,由左视图找到其余层数里最多个数相加即可【详解】解:(1)如图所示:(2)从左面和从上面看到的形状图与图2方格中所画的形状图相同,在俯视图的相应位置所摆放的小立方体的个数如图所示:或
15、因此最少需要6个小立方体故答案为6【点睛】本题考查给出立体图形画三视图,根据画出的左视图与俯视图确定最少正方体,掌握三视图定义,利用数形结合思想是解题关键2、见解析【分析】主视图有3列,每列小正方形数目分别为,;左视图有2列,每列小正方形数目分别为,;俯视图有3列,每行小正方形数目分别为,【详解】解:如图所示:【点睛】此题主要考查了作三视图,根据主视图、左视图、俯视图是分别从物体正面、左面和上面看,所得到的图形是解题关键3、(1)蚂蚁需要爬行的最短路径长为cm;(2)蚂蚁需要爬行的最短路径长为cm;(3)蚂蚁需要爬行的最短路径长为cm【分析】(1)根据正方体的侧面展开图,利用勾股定理求出AC1
16、的长即可得答案;(2)分横向展开和竖向展开两种情况,分别利用勾股定理求出AC1的长,比较即可得答案;(3)画出圆柱侧面展开图,利用勾股定理求出AC的长即可得答案【详解】(1)正方体的侧面展开图如图所示:AC1为蚂蚁需要爬行的最短路径长,正方体的棱长为5cm,AC=10,CC1=5,AC1=cm蚂蚁需要爬行的最短路径长为cm(2)分两种情况:如图,当横向展开时:AC=10,CC1=6,AC1=cm,如图,当竖向展开时:AD=11,DC1=5,AC1=cm,蚂蚁需要爬行的最短路径长为cm(3)圆柱侧面展开图如图所示:圆柱底面周长为10cm,高为5cm,BC=5,AB=5,AC=cm,蚂蚁需要爬行的
17、最短路径长为cm【点睛】本题考查立体图形的侧面展开图及勾股定理,熟记各立体图形的侧面展开图是解题关键4、(1)见解析;(2),【分析】(1)根据三视图的定义画出图形即可(2)分前后,左右,上下三个方向统计正方形的个数即可求出表面积,根据个数即可得出体积【详解】解:(1)该几何体从正面、上面、左面看到的形状图如图:(2)因为该几何体由8个棱长都为的正方体堆成,每个正方体的体积都为,所以其体积为;该几何体前后各有4个小正方形,上下各有6个小正方形,左右各有5个小正方形,每个小正方形的面积为,所以其表面积为【点睛】本小题考查几何体、三视图等基础知识,考查空间观念与几何直观,解题的关键是熟练掌握基本知识,属于中考常考题型5、(1)x=1,由7个小立方块搭成(2)见解析【分析】(1)根据主视图和俯视图之间的关系,可得到x的值,故可求出几何体的小立方块的个数;(2)根据左视图的特点即可作图 【详解】解:(1)由主视图和俯视图之间的关系,可得x=1小立方块的个数为6+1=7个;(2)从左面看得到的图形如下:【点睛】本题考查简单组合体的三视图,画三视图时注意“长对正,宽相等,高平齐”