《难点解析京改版九年级数学下册第二十四章-投影、视图与展开图单元测试练习题.docx》由会员分享,可在线阅读,更多相关《难点解析京改版九年级数学下册第二十四章-投影、视图与展开图单元测试练习题.docx(18页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、九年级数学下册第二十四章 投影、视图与展开图单元测试 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、下列说法错误的是()A六棱柱有六个侧面,侧面都是长方形B球体的三种视图均为同样大小的圆C棱锥都是由平面围
2、成的D一个直角三角形绕其直角边旋转一周得到的几何体是圆锥2、如图所示的几何体的俯视图是( )ABCD3、下列几何体中,俯视图为三角形的是( )ABCD4、如图,一个水晶球摆件,它是由一个长方体和一个球体组成的几何体,则其主视图是()ABCD5、如图是一个正方体的平面展开图,标注了字母m的是正方体的前面,如果正方体的左面与右面标注的式子相等,前面与后面标注的数字互为相反数,则m的值为()A3B3C2D26、如图是一个蛋筒冰淇凌,蛋筒部分可以看做是一个圆锥,下面平面展开图能围成一个圆锥的是( )ABCD7、水平放置的下列几何体,主视图不是矩形的是( )ABCD8、如图,这个几何体是将一个正方体中间
3、挖出一个圆柱体后的剩余部分,该几何体的主视图是( )ABCD9、如图,小明在A时测得某树的影长为8m,B时又测得该树的影长为2m,若两次日照的光线互相垂直,则树的高度为()mA2B4C6D810、下列几何体的主视图和俯视图完全相同的是( )ABCD第卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、路灯下行人的影子属于_投影(填“平行”或“中心”)2、一个几何体由若干大小相同的小立方块搭成,如图分别是从它的正面、上面看到的形状图,则该几何体至少是用 _个小立方块搭成的3、如图是一个正方体的展开图,如果将它折叠成一个正方体后相对面上的数相等,那么xy的值为_4、如图是一个正方
4、体的表面展开图,相对面上两个数互为相反数,则xy_5、如图所示是给出的几何体三个方向看到的形状,则这个几何体最多由_个小正方体组成三、解答题(5小题,每小题10分,共计50分)1、分别画出图中几何体的主视图、左视图、俯视图2、如图是正方体的两种表面展开图,用字母C,D分别表示与A、B相对的面,请分别在图1、图2上标出C、D3、如图,在正方形纸片ABCD中,E是CD的中点,将正方形纸片折叠,点B落在线段AE上的点G处,折痕为AF若AD4cm,求CF的长4、从正面、左面、上面观察如图所示的几何体,分别画出你所看到的几何体的形状5、已知由几个大小相同的小立方块搭成的几何体,从上面观察,看到的形状如图
5、所示,其中小正方形中的数字表示在该位置的小立方块的个数,请分别画出从正面、左面看到的这个几何体的形状图(几何体中每个小立方块的棱长都是1cm)画图时要用刻度尺-参考答案-一、单选题1、A【分析】根据棱柱,球体,棱锥,圆锥的形状进行判断即可【详解】解:A、直六棱柱有六个侧面,侧面都是长方形,原说法错误,符合题意;B、球体的三种视图均为同样大小的圆,原说法正确,不符合题意;C、棱锥都是由平面围成的,原说法正确,不符合题意;D、一个直角三角形绕其直角边旋转一周得到的几何体是圆锥,原说法正确,不符合题意;故选:A【点睛】本题考查了简单几何体,解题的关键是了解一些几何体的形状,难度不大2、C【分析】根据
6、几何体的俯视图即为从几何体的上面看到的形状,判断即可【详解】解:从上面看该几何体,所看到的图形如下:故选:C【点睛】本题考查简单组合体的三视图,理解视图的意义,解题的关键是:掌握俯视图的画法是正确判断的前提3、D【分析】从正面、上面和左面三个不同的方向看一个物体,并描绘出所看到的三个图形,即几何体的三视图【详解】从上方朝下看只有D选项为三角形故选:D【点睛】本题考查了简单几何体的三视图,三视图是从正面、左面、上面以平行视线观察物体所得的图形从视图反过来考虑几何体时,它有多种可能性例如,正方体的主视图是一个正方形,但主视图是正方形的几何体有很多,如三棱柱、长方体、圆柱等因此在学习时应结合实物,亲
7、自变换角度去观察,才能提高空间想象能力4、D【分析】根据从正面看得到的图形是主视图,可得答案【详解】解:从正面看下边是一个矩形,矩形的上边是一个圆,故选:D【点睛】本题考查了简单组合体的三视图,掌握从正面看得到的图形是主视图是解决此题关键5、D【分析】正方体的表面展开图,相对的面之间一定相隔一个正方形确定出相对面,然后列出方程求解即可【详解】解:正方体的表面展开图,相对的面之间一定相隔一个正方形,“m”与“x”是相对面,“2”与“3”是相对面,“4”与“2x”是相对面,解正方体的左面与右面标注的式子相等,42x,解得x2;标注了m字母的是正方体的前面,左面与右面标注的式子相等,前面与后面标注的
8、数字互为相反数,m2故选:D【点睛】本题主要考查了正方体相对两个面上的文字,注意正方体的空间图形,从相对面入手,分析及解答问题6、B【分析】根据圆锥的展开图直接判断即可【详解】解:圆锥的展开图是由一个扇形和圆组成的,扇形的弧与圆相接,如图所示:故选:B【点睛】本题考查了圆锥的展开图,解题关键是树立空间观念,明确圆锥的展开图是由扇形和圆组成的7、C【分析】根据从正面看到的图形是主视图,观察图形的主视图是否为矩形,即可判断【详解】解:观察各图形,其中A,B,D的主视图是矩形,C选项的主视图是三角形故C选项符合题题意,故选C【点睛】本题考查了三视图,掌握从正面看到的图形是主视图是解题的关键8、A【分
9、析】根据主视图的概念求解即可【详解】解:由题意可得,该几何体的主视图是:故选:A【点睛】此题考查了几何体的主视图,解题的关键是熟练掌握几何体主视图的概念9、B【分析】根据题意,画出示意图,易得:EDCFDC,进而可得,即DC2EDFD,代入数据可得答案【详解】解:根据题意,作EFC,树高为CD,且ECF90,ED2m,FD8m;E+F90,E+ECD90,ECDF,EDCFDC,即DC2EDFD2816,解得CD4m故选:B【点睛】本题主要考查了平行投影与相似三角形的应用,准确计算是解题的关键10、D【分析】根据主视图和俯视图是分别从物体正面和上面看到的图形,逐项分析即可【详解】解:A、圆柱主
10、视图是矩形,俯视图是圆,故A选项不合题意;B、圆锥的主视图是等腰三角形,俯视图是圆以及中心有一个点,故B选项不合题意;C、三棱柱主视图是一行两个矩形且公共边是虚线,俯视图是三角形,故C选项不合题意;D、圆的主视图和俯视图都为圆,故D选项符合题意;故选D【点睛】本题考查简单几何体的三视图,解决问题的关键是掌握主视图是从物体的正面看到的视图,俯视图是从物体的上面看得到的视图二、填空题1、中心【分析】根据中心投影的概念填写即可中心投影是指把光由一点向外散射形成的投影【详解】解:路灯发出的光线可以看成是从一点发出的光线,像这样的光线所形成的投影叫做中心投影,故路灯下人的影子是中心投影故答案为:中心【点
11、睛】本题主要考查了中心投影的概念,做题的关键是熟练掌握中心投影的概念,区别中心投影和平行投影概念2、6【分析】根据题意可以得到该几何体从正面和上面看至少有多少个小立方体,综合考虑即可解答本题【详解】解:从正面看至少有三个小立方体且有两层;从上面看至少有五个小立方体,且有两列;只需要保证从正面看的上面一层有一个,从上面看有五个小立方体即可满足题意,最少是用6个小立方块搭成的,故答案为:6【点睛】此题主要考查学生对三视图掌握程度和灵活运用能力,同时也体现了对空间想象能力方面的考查如果掌握口诀“俯视图打地基,正视图疯狂盖,左视图拆违章”就更容易得到答案3、3【分析】根据正方体表面展开图的特征求出x、
12、y的值,再代入计算即可【详解】解:根据题意得:“x”与“7”相对,“y”与“4”相对,相对的面上的数相等,x=7,y=4,x-y=7-4=3,故答案为:3【点睛】本题考查正方体表面展开图,掌握正方体表面展开图的特征是正确判断的前提,求出x、y的值是解决问题的关键4、-6【分析】首先根据正方体的表面展开图的性质得到2和x是相对面上两个数,4和y是相对面上两个数,然后根据相反数的性质求出x和y的值,最后代入(xy)求解即可【详解】解:由正方体的表面展开图可得,2和x是相对面上两个数,4和y是相对面上两个数,解得:,故答案为:-6【点睛】此题考查了正方体的表面展开图,相反数的性质,代数式求值问题,解
13、题的关键是正确分析出正方体的表面展开图中相对面上两个数5、10【分析】从俯视图可知第一层有5个小正方体,从正视图和左视图可知第二层最多有5个,据此即可求得答案【详解】由俯视图可知第一层有5个小正方体,由已知的正视图和左视图可知,第2层最多有5个小正方体,故该几何体最多有5+5=10个故答案为:10【点睛】考查几何体的三视图的知识,从正面看的图形是主视图,从左面看到的图形是左视图,从上面看到的图象是俯视图掌握以上知识是解题的关键三、解答题1、见解析【分析】利用三视图的画法从不同的角度画出图形得出即可【详解】解:如图,【点睛】本题主要考查了简单组合体的三视图,主视图、左视图、俯视图是分别从物体正面
14、、左面和上面看,所得到的图形2、见解析【分析】利用正方体及其表面展开图的特点解题【详解】解:如图所示:【点睛】此题主要考查正方体及其表面展开图,注意正方体的空间图形,从相对面入手,分析及解答问题3、6【分析】设BFx,则FGx,CF4x,在RtGEF中,利用勾股定理可得EF2,在RtFCE中,利用勾股定理可得EF2(4x)2+22,从而得到关于x的方程,求解x即可【详解】解:设BFx,则则FGx,CF4xE是CD的中点,DE=CE=在RtADE中,利用勾股定理可得AE根据折叠的性质可知AGAB4,BF=FG=xGEAE-AG=4在RtGEF中,利用勾股定理可得EF2(4)2+x2,在RtFCE
15、中,利用勾股定理可得EF2(4x)2+22,(4)2+x2(4x)2+22,解得x2,BF22FC=BC-BF=4-(22)=6-2【点睛】本题主要考查了正方形的性质及翻转折叠的性质,准确运用题目中的条件用两种方法表示出EF,列出方程式解题的关键4、见解析【分析】读图可得,主视图有3列,每列小正方形数目分别为2,1,1;左视图有1列,小正方形数目分别为2;俯视图有3行,每行小正方形数目分别为1,1,1【详解】如图所示:【点睛】此题考查作图-三视图,解题关键在于掌握作图法则.5、见解析【分析】由已知条件可知,主视图有3列,每列小正方数形数目分别为1,3,4,左视图有2列,每列小正方形数目分别为3,4据此可画出图形【详解】解:如图所示,即为所求:从正面看 从左面看【点睛】本题考查几何体的三视图画法由几何体的俯视图及小正方形内的数字,可知主视图的列数与俯视数的列数相同,且每列小正方形数目为俯视图中该列小正方形数字中的最大数字左视图的列数与俯视图的行数相同,且每列小正方形数目为俯视图中相应行中正方形数字中的最大数字,理解这个画法是解题关键