《难点解析京改版九年级数学下册第二十四章-投影、视图与展开图定向练习练习题(精选).docx》由会员分享,可在线阅读,更多相关《难点解析京改版九年级数学下册第二十四章-投影、视图与展开图定向练习练习题(精选).docx(21页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、九年级数学下册第二十四章 投影、视图与展开图定向练习 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、如图所示,矩形纸片ABCD中,AB4cm,把它分割成正方形纸片ABFE和矩形纸片EFCD后,分别裁出扇形
2、ABF和半径最大的圆,恰好能作为一个圆锥的侧面和底面,则AD的长为()A8cmB7cmC6cmD5cm2、如图,由一个圆柱体和一个长方体组成的几何体,其左视图是( )ABCD3、下列图形都是由六个相同的正方形组成的,经过折叠不能围成正方体的是( )ABCD4、如图是某个几何体的展开图,该几何体是( )A三棱锥B三棱柱C四棱锥D四棱柱5、如图是一个几何体的实物图,则其主视图是( )ABCD6、一个几何体的三视图如图所示,这个几何体是()A圆柱B棱柱C圆锥D球7、如图所示的几何体,从上面看到的形状图是()ABCD8、下列图形中,不是正方体表面展开图的是()ABCD9、如图摆放的下列几何体中,左视图
3、是圆的是( )ABCD10、一个由5个相同的正方体组成的立体图形,如图所示,则这个立体图形的左视图是()ABCD第卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、日晷是我国古代测定时刻的仪器,它是利用_来测定时刻的2、将一个正方体纸盒沿棱剪开并展开,共有_种不同形式的展开图,下图中_不是正方形的展开图(填序号)3、一个正方体的表面展开图如图所示,则原正方体中的“”所在面的对面所标的字是_4、路灯下行人的影子属于_投影(填“平行”或“中心”)5、如图,将一张边长为3的正方形纸片按虚线裁剪后,恰好围成一个底面是正三角形的棱柱,那么这个棱柱的侧面积为_三、解答题(5小题,每小题
4、10分,共计50分)1、吴老师在与同学进行“蚂蚁怎样爬最近”的课题研究时设计了以下三个问题,请你根据下列所给的条件分别求出蚂蚁需要爬行的最短路径长(1)如图1,正方体的棱长为5cm,一只蚂蚁欲从正方体底面上的点A沿正方体表面爬到点C1处;(2)如图2,长方体底面是边长为5cm的正方形,高为6cm,一只蚂蚁欲从长方体底面上的点A沿长方体表而爬到点C1处;(3)如图3,是一个底面周长为10cm,高为5cm的圆柱体,一只蚂蚁欲从圆柱体底面上的点A沿圆柱体侧面爬到点C处2、如图所示的几何体是由几个相同的小正方体排成3行组成的(1)填空:这个几何体由 个小正方体组成;(2)画出该几何体的三个视图(用阴影
5、图形表示)3、(1)如图,由几个棱长为1的正方体组成的一个几何体请在方格纸中用实线画出这个几何体从不同方向看到的图形;该几何体的表面积是_平方单位(包括底面积)(2)如图,平面上有四个点A,B,C,D,按照以下要求作图并解答问题:作直线AD;作射线CB交直线AD于点E;连接AC,BD交于点F;若图中F是AC的一个三等分点,AFFC,已知线段AC上所有线段之和为24cm,则AF的长为_cm4、(1)已知图1是由大小相同的小立方块搭成的几何体,请在图2的方格中分别画出从左面和从上面看到的该几何体的形状图(请依照从正面看的范例画图); (2)若要用大小相同的小立方块搭一个几何体,使得它从左面和从上面
6、看到的形状图与你在图2方格中所画的形状图相同,则搭这样的一个几何体至少需要 个小立方块5、已知由几个大小相同的小立方块搭成的几何体,从上面观察,看到的形状如图所示,其中小正方形中的数字表示在该位置的小立方块的个数,请分别画出从正面、左面看到的这个几何体的形状图(几何体中每个小立方块的棱长都是1cm)画图时要用刻度尺-参考答案-一、单选题1、C【分析】可求得扇形弧长,则它等于圆锥底面圆的周长,从而可求得圆的半径,则可知DE的长,从而可得AD的长【详解】解:AB=4cm,ABBF的弧长 设圆的半径为r,则2r=2r=1由题意得:DE=2cm四边形ABEF为正方形AE=AB=4cmAD=AE+DE=
7、4+2=6(cm)故选:C【点睛】本题考查了正方形的性质,弧长及圆周长的计算,关键是抓住圆锥的侧面展开图是扇形,其弧长等于底面圆的周长2、A【分析】从左边看过去:可以看到上下两个宽度相同的长方形,从而可以得到左视图.【详解】解:从左边看过去:可以看到上下两个宽度相同的长方形,所以一个圆柱体和一个长方体组成的几何体,其左视图是A选项中的图形,故选A【点睛】本题考查的是三视图,掌握“三视图中的左视图”是解本题的关键,注意的是能看到的棱要以实线来体现,看不见的棱要以虚线来体现.3、D【分析】根据正方体的展开图去判断【详解】是正方体的展开图之一,能围成正方体,A不符合题意;是正方体的展开图之一,能围成
8、正方体,B不符合题意;是正方体的展开图之一,能围成正方体,C不符合题意;不是正方体的展开图之一,不能围成正方体,D符合题意;故选D【点睛】本题考查了正方体的展开图,熟练掌握正方体的各种展开图是解题的关键4、B【分析】由展开图可得,改几何体由三个面的长方形,两个面是三角形,据此可得该几何体是三棱柱【详解】解:由由展开图可得,改几何体由三个面的长方形,两个面是三角形,所以该几何体是三棱柱故选:B【点睛】本题考查几何体的展开图,从实物出发,结合具体问题,辨析几何体的展开图,通过结合立体图形与平面图象的转化,建立空间观念,是解题关键5、C【分析】找到从正面看所得到的图形即可【详解】解:从正面看可得到一
9、个矩形和一个下底和矩形相邻的梯形的组合图故选:C【点睛】本题考查了三视图的知识,主视图是从物体的正面看得到的视图6、A【分析】根据三视图判断几何体的形状即可;【详解】由已知三视图可知,主视图、左视图为长方形,俯视图为圆,则符合条件的立体图形是圆柱;故选A【点睛】本题主要考查了三视图的判断,准确分析是解题的关键7、B【分析】找出从几何体的上面看所得到的视图即可【详解】解:从上面看到的形状图是,故选:B【点睛】此题主要考查了简单几何体的视图,注意培养学生的思考能力和对几何体三种视图的空间想象能力是解题的关键8、B【分析】根据正方体展开图的11种形式对各选项分析判断即可得解【详解】解:由正方体四个侧
10、面和上下两个底面的特征可知:A,C,D选项可以拼成一个正方体,而B选项,上底面不可能有两个,故不是正方体的展开图故选:B【点睛】本题考查了几何体的展开图熟记展开图的11种形式是解题的关键,利用不是正方体展开图的“一线不过四、田凹应弃之”(即不能出现同一行有多于4个正方形的情况,不能出现田字形、凹字形的情况)判断也可9、D【分析】根据这几种图形的左视图即可作出判断【详解】A、长方体的左视图是长方形,故不符合题意;B、圆柱体的左视图是长方形,故不符合题意;C、圆锥体的左视图是三角形,故不符合题意;D、球体的左视图是圆,故符合题意故选:D【点睛】本题考查了几何体的三视图,掌握常见几何体的三视图是关键
11、10、A【分析】找到从左面看所得到的图形即可,注意所有的看到的棱都应表现在左视图中【详解】解:从左面看易得有两列,从左到右小正方形的个数分别为3,1故选:A【点睛】本题考查了三视图的知识,左视图是从物体的左面看得到的视图二、填空题1、日影【分析】根据日晷的工作原理解答即可【详解】解:晷是按照日影测定时刻的仪器,晷长即为所测量影子的长度故答案是:日影【点睛】本题考查了数学常识,此类问题要结合实际问题来解决,生活中的一些数学常识要了解2、11 【分析】可以逆向思考,若由6个正方形连接起来的一整张纸片能组成正方体之和,则保证有两个底面,四个侧面,据此将六个正方形进行排列即可解答【详解】解:将一个正方
12、体纸盒的某些棱剪开后,可以将其平铺成一个“平面展开图”,也就是由6个正方形连接起来的一整张纸片那么正方体的平面展开图一共有11种如下图:由此可判断不是正方形的展开图,故答案为:11,【点睛】此题主要考查了正方体展开图,熟练掌握正方体展开图的特点是解决问题的关键3、有【分析】根据正方体展开图的性质即可求解【详解】解:由正方体的展开图可知,“”与“有”相对,“几”与“真”相对,“何”与“趣”相对故答案为:有【点睛】本题考查了正方体的展开,属于简单题,空间想象能力是解题关键4、中心【分析】根据中心投影的概念填写即可中心投影是指把光由一点向外散射形成的投影【详解】解:路灯发出的光线可以看成是从一点发出
13、的光线,像这样的光线所形成的投影叫做中心投影,故路灯下人的影子是中心投影故答案为:中心【点睛】本题主要考查了中心投影的概念,做题的关键是熟练掌握中心投影的概念,区别中心投影和平行投影概念5、#【分析】首先根据题意求得等边三角形的边长为1,高为,继而可求得矩形的高,则可求得矩形的面积即可【详解】解:将一张边长为3的正方形纸片按虚线裁剪后,恰好围成一个底面是正三角形的棱柱,的边长为1,则高为,矩形的面积为:,故答案为:【点睛】此题考查了正方形的性质、矩形的性质、等边三角形的性质以及正三棱柱的知识此题综合性较强,难度适中,考查了学生的空间想象能力,注意数形结合思想的应用三、解答题1、(1)蚂蚁需要爬
14、行的最短路径长为cm;(2)蚂蚁需要爬行的最短路径长为cm;(3)蚂蚁需要爬行的最短路径长为cm【分析】(1)根据正方体的侧面展开图,利用勾股定理求出AC1的长即可得答案;(2)分横向展开和竖向展开两种情况,分别利用勾股定理求出AC1的长,比较即可得答案;(3)画出圆柱侧面展开图,利用勾股定理求出AC的长即可得答案【详解】(1)正方体的侧面展开图如图所示:AC1为蚂蚁需要爬行的最短路径长,正方体的棱长为5cm,AC=10,CC1=5,AC1=cm蚂蚁需要爬行的最短路径长为cm(2)分两种情况:如图,当横向展开时:AC=10,CC1=6,AC1=cm,如图,当竖向展开时:AD=11,DC1=5,
15、AC1=cm,蚂蚁需要爬行的最短路径长为cm(3)圆柱侧面展开图如图所示:圆柱底面周长为10cm,高为5cm,BC=5,AB=5,AC=cm,蚂蚁需要爬行的最短路径长为cm【点睛】本题考查立体图形的侧面展开图及勾股定理,熟记各立体图形的侧面展开图是解题关键2、(1)10;(2)见解析【分析】(1)数出小立方体的个数即可;(2)根据三视图的画法画出主视图、左视图、俯视图【详解】解:(1)根据几何体,在俯视图中标出:个,故答案为:10;(2)三视图如图所示:【点睛】考查简单几何体的三视图的画法,解题的关键是掌握主视图、左视图、俯视图实际上就是从正面、左面、上面对该几何体正投影所得到的图形画三视图时
16、还要注意“长对正、宽相等、高平齐”3、故答案为:2【点睛】此题考查了从不同方向看几何体及几何体的表面积的计算,解答本题的关键是掌握立体图形的观察方法4(1)见解析;36;(2)见解析;见解析;见解析;4【分析】(1)从正面看:第一列有3个小正方形,第二列有2个小正方形,第三列有1个小正方形;从左面看:与从正面看到的相同;从上面看:第一列有3个小正方形,第二列有2个小正方形,第三列有1个小正方形;据此解答即可;表面积=几何体6个面的面积之和,即可求解;(2)根据题意要求画图即可;由题意可得AC=3AF,FC=2AF,然后根据线段AC上所有线段之和为24cm即可求出AF的长;【详解】解:(1)如图
17、所示:该几何体的表面积是66=36平方单位;(2)如图所示;如图所示;如图所示;因为F是AC的一个三等分点,AFFC,所以AC=3AF,FC=2AF,因为线段AC上所有线段之和为24cm,所以AF+CF+AC=24,即AF+2AF+3AF=24,即6AF=24,所以AF的长为4cm故答案为:4【点睛】本题考查了组合体的三视图、线段、射线以及直线的有关知识,属于基础题型,熟练掌握相关的基础知识是解题关键4、(1)见解析;(2)6【分析】(1)从上面看得到从左往右3列正方形的个数依次为2,2,1,依此画出图形即可;从左面看得到从左往右2列正方形的个数依次为2,1;依此画出图形即可;(2)由俯视图易
18、得最底层小立方块的个数,由左视图找到其余层数里最多个数相加即可【详解】解:(1)如图所示:(2)从左面和从上面看到的形状图与图2方格中所画的形状图相同,在俯视图的相应位置所摆放的小立方体的个数如图所示:或因此最少需要6个小立方体故答案为6【点睛】本题考查给出立体图形画三视图,根据画出的左视图与俯视图确定最少正方体,掌握三视图定义,利用数形结合思想是解题关键5、见解析【分析】由已知条件可知,主视图有3列,每列小正方数形数目分别为1,3,4,左视图有2列,每列小正方形数目分别为3,4据此可画出图形【详解】解:如图所示,即为所求:从正面看 从左面看【点睛】本题考查几何体的三视图画法由几何体的俯视图及小正方形内的数字,可知主视图的列数与俯视数的列数相同,且每列小正方形数目为俯视图中该列小正方形数字中的最大数字左视图的列数与俯视图的行数相同,且每列小正方形数目为俯视图中相应行中正方形数字中的最大数字,理解这个画法是解题关键