《精品解析2021-2022学年北师大版七年级数学下册第四章三角形专题练习试卷.docx》由会员分享,可在线阅读,更多相关《精品解析2021-2022学年北师大版七年级数学下册第四章三角形专题练习试卷.docx(22页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、北师大版七年级数学下册第四章三角形专题练习 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、如图,AC=DC,BCE=DCA,要使ABCDEC,不能添加下列选项中的( )AA=DBBC=ECCAB=DEDB
2、=E2、如图,E为线段BC上一点,ABE=AED=ECD=90,AE=ED,BC=20,AB=8,则BE的长度为( )A12B10C8D63、如图,在55的正方形网格中,ABC的三个顶点都在格点上,则与ABC有一条公共边且全等(不与ABC重合)的格点三角形(顶点都在格点上的三角形)共有()A3个B4个C5个D6个4、如图,在ABC和BAD中,ACBD,要使ABCBAD,则需要添加的条件是()ABADABCBBACABDCDACCBDDCD5、下列长度的三条线段能组成三角形的是( )A2,3,6B2,4,7C3,3,5D3,3,76、在下列长度的各组线段中,能组成三角形的是( )A2,4,7B1
3、,4,9C3,4,5D5,6,127、如图,ABC的面积为18,AD平分BAC,且ADBD于点D,则ADC的面积是()A8B10C9D168、如图,和全等,且,对应若,则的长为( )A4B5C6D无法确定9、如图,点C在AOB的OB边上,用尺规作出了NCE=AOD,作图痕迹中,弧FG是( )A以点C为圆心,OD为半径的弧B以点C为圆心,DM为半径的弧C以点E为圆心,OD为半径的弧D以点E为圆心,DM为半径的弧10、如图,在中,已知点,分别为,的中点,且,则的面积是( )AB1C5D第卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、如图,在ABC中,ACB90,AC8,BC
4、10,点P从点A出发沿线段AC以每秒1个单位长度的速度向终点C运动,点Q从点B出发沿折线BCCA以每秒3个单位长度的速度向终点A运动,P、Q两点同时出发分别过P、Q两点作PEl于E,QFl于F,当PEC与QFC全等时,CQ的长为_2、如图,已知AB3,ACCD1,DBAC90,则ACE的面积是 _3、如图,则的长为_4、已知,如图,ABAC,ADAE,BE与CD相交于点P,则下列结论:PCPB;CAPBAP;PABB;共有4对全等三角形;正确的是 _(请填写序号)5、如图,线段AC与BD相交于点O,AD90,要证明ABCDCB,还需添加的一个条件是_(只需填一个条件即可)三、解答题(5小题,每
5、小题10分,共计50分)1、如图,已知,求证:2、如图,E为AB上一点,BDAC,ABBD,ACBE求证:BCDE3、如图1,在长方形ABCD中,ABCD6cm,BC10cm,点P从点B出发,以2cm/s的速度沿BC向点C运动,设点P的运动时间为ts,且t5(1)PC cm(用含t的代数式表示)(2)如图2,当点P从点B开始运动时,点Q从点C出发,以cm/s的速度沿CD向点D运动,是否存在这样的v值,使得以ABP为顶点的三角形与以PQC为顶点的三角形全等?若存在,请求出的值;若不存在,请说明理由4、如图,在中,点D是内一点,连接CD,过点C作且,连接AD,BE求证:5、如图,CEAB于点E,B
6、FAC于点F,BDCD(1)求证:BDECDF;(2)求证:AEAF-参考答案-一、单选题1、C【分析】根据全等三角形的判定定理进行分析即可;【详解】根据已知条件可得,即,AC=DC,已知三角形一角和角的一边,根据全等条件可得: A. A=D,可根据ASA证明,A正确;B. BC=EC,可根据SAS证明,B正确;C. AB=DE,不能证明,C故错误;D. B=E,根据AAS证明,D正确;故选:C【点睛】本题主要考查了全等三角形的判定定理,掌握全等三角形的判定方法是解题的关键2、A【分析】利用角相等和边相等证明,利用全等三角形的性质以及边的关系,即可求出BE的长度【详解】解:由题意可知:ABE=
7、AED=ECD=90,在和中, ,故选:A【点睛】本题主要是考查了全等三角形的判定和性质,熟练通过已知条件证明三角形全等,利用全等性质及边的关系,来求解未知边的长度,这是解决本题的主要思路3、C【分析】根据全等三角形的性质及判定在图中作出符合条件的三角形即可得出结果【详解】解:如图所示:与BC边重合且与全等的三角形有:,与AC边重合且与全等的三角形有:,与AB边重合且与全等的三角形有:,共有5个三角形,故选:C【点睛】题目主要考查全等三角形的判定和性质,熟练掌握全等三角形的判定和性质定理是解题关键4、B【分析】利用全等三角形的判定方法对各选项进行判断【详解】解:AC=BD,而AB为公共边,A、
8、当BAD=ABC时, “边边角”不能判断ABCBAD,该选项不符合题意;B、当BAC=ABD时,根据“SAS”可判断ABCBAD,该选项符合题意;C、当DAC=CBD时,由三角形内角和定理可推出D=C,“边边角”不能判断ABCBAD,该选项不符合题意;D、同理,“边边角”不能判断ABCBAD,该选项不符合题意;故选:B【点睛】本题考查了全等三角形的判定,判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL注意:AAA、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角5、C【分析】根据三角形的三边关系,逐项判断即可求解
9、【详解】解:A、因为 ,所以不能组成三角形,故本选项不符合题意;B、因为 ,所以不能组成三角形,故本选项不符合题意;C、因为 ,所以能组成三角形,故本选项符合题意;D、因为 ,所以不能组成三角形,故本选项不符合题意;故选:C【点睛】本题主要考查了三角形的三边关系,熟练掌握三角形的两边之和大于第三边,两边之差小于第三边是解题的关键6、C【分析】根据三角形三边关系定理:三角形两边之和大于第三边,进行判定即可【详解】解:A、,不能构成三角形;B、,不能构成三角形;C、,能构成三角形;D、,不能构成三角形故选:C【点睛】本题主要考查运用三角形三边关系判定三条线段能否构成三角形的情况,理解构成三角形的三
10、边关系是解题关键7、C【分析】延长BD交AC于点E,根据角平分线及垂直的性质可得:,依据全等三角形的判定定理及性质可得:,再根据三角形的面积公式可得:SABD=SADE,SBDC=SCDE,得出SADC=12SABC,求解即可【详解】解:如图,延长BD交AC于点E,AD平分,在和中,SABD=SADE,SBDC=SCDE,SADC=12SABC=1218=9,故选:C【点睛】题目主要考查全等三角形的判定和性质,角平分线的定义等,熟练掌握基础知识,进行逻辑推理是解题关键8、A【分析】全等三角形对应边相等,对应角相等,根据题中信息得出对应关系即可【详解】和全等,对应AB=DF=4故选:A【点睛】本
11、题考查了全等三角形的概念及性质,应注意对应边、对应角是对两个三角形而言的,指两条边、两个角的关系,而对边、对角是指同一个三角形的边和角的位置关系可以进一步推广到全等三角形对应边上的高相等,对应角的平分线相等,对应边上的中线相等,周长及面积相等全等三角形有传递性9、D【分析】根据作一个角等于已知角的步骤即可得【详解】解:作图痕迹中,弧FG是以点E为圆心,DM为半径的弧,故选:D【点睛】本题主要考查作图-尺规作图,解题的关键是熟练掌握作一个角等于已知角的尺规作图步骤10、B【分析】根据三角形面积公式由点为的中点得到,同理得到,则,然后再由点为的中点得到【详解】解:点为的中点,点为的中点,点为的中点
12、,故选:【点睛】本题考查了三角形的中线与面积的关系,解题的关键是掌握是三角形的中线把三角形的面积平均分成两半二、填空题1、7或3.5【分析】分两种情况:(1)当P在AC上,Q在BC上时;(2)当P在AC上,Q在AC上时,即P、Q重合时;【详解】解:当P在AC上,Q在BC上时,ACB=90,PCE+QCF=90,PEl于E,QFl于FPEC=CFQ=90,EPC+PCE=90,EPC=QCF,PEC与QFC全等,此时是PCECQF,PC=CQ,8-t=10-3t,解得t=1,CQ=10-3t=7;当P在AC上,Q在AC上时,即P、Q重合时,则CQ=PC,由题意得,8-t=3t-10,解得t=4.
13、5,CQ=3t-10=3.5,综上,当PEC与QFC全等时,满足条件的CQ的长为7或3.5,故答案为:7或3.5【点睛】本题主要考查了全等三角形的性质,根据题意得出关于的方程是解题的关键2、#【分析】先根据三角形全等的判定定理证出,再根据全等三角形的性质可得,然后利用三角形的面积公式即可得【详解】解:在和中,则的面积是,故答案为:【点睛】本题考查了三角形全等的判定定理与性质,熟练掌握三角形全等的判定方法是解题关键3、3【分析】根据,可得到 ,再由 ,可得 ,从而得到 ,即可求解【详解】解:, , , ,即 , , 故答案为:3【点睛】本题主要考查了全等三角形的判定和性质,熟练掌握全等三角形的判
14、定和性质定理是解题的关键4、【分析】先证AEBADC(SAS),再证EPCDPB(AAS),可判断;可证APCAPB(SSS),判定断;利用特殊等腰三角形可得可判断,根据全等三角形个数可判断即可【详解】解:在AEB和ADC中,AEBADC(SAS),B=C,EC=AC-AE=AB-AD=DB,在EPC和DPB中,EPCDPB(AAS),PC=PB,故正确;在APC和APB中,APCAPB(SSS),CAP=BAP,故正确;当AP=PB时,PAB=B,当APPB时,PABB,故不正确;在EAP和DAP中,EAPDAP(SAS),共有4对全等三角形,故正确故答案为:【点睛】本题考查三角形全等判定与
15、性质,掌握全等三角形的判定方法与性质是解题关键5、答案不唯一,如:ACDB,ABDC,ABCDCB【分析】根据全等三角形的判定条件求解即可【详解】解:AD90,BC=CB,只需要添加:ACDB或ABDC,即可利用HL证明ABCDCB;添加ABCDCB可以利用AAS证明ABCDCB,故答案为:答案不唯一,如:ACDB,ABDC,ABCDCB【点睛】本题主要考查了全等三角形的判定,熟知全等三角形的判定条件是解题的关键三、解答题1、见解析【分析】先证明,然后利用AAS证明BACEAF即可得到BC=EF【详解】解:,即,在BAC和EAF中,BACEAF(AAS),BC=EF【点睛】本题主要考查了全等三
16、角形的性质与判定条件,熟知全等三角形的性质与判定条件是解题的关键2、见解析【分析】根据平行线的性质可得,利用全等三角形的判定定理即可证明【详解】证明:, 在和中, 【点睛】题目主要考查全等三角形的判定定理和平行线的性质,熟练掌握全等三角形的判定定理是解题关键3、(1)(102t);(2)当v=1或v=2.4时,ABP和PCQ全等【分析】(1)根据题意求出BP,然后根据PC=BC-BP计算即可;(2)分ABPQCP和ABPPCQ两种情况,根据全等三角形的性质解答即可【详解】解:(1)点P的速度是2cm/s,ts后BP=2tcm,PC=BCBP=(102t)cm,故答案为:(102t);(2)由题
17、意得:,B=C=90,只存在ABPQCP和ABPPCQ两种情况,当ABPPCQ时,AB=PC,BP=CQ,102t=6,2t=vt,解得,t=2,v=2,当ABPQCP时,AB=QC,BP=CP,2t=10-2t, vt=6,解得,t=2.5,v=2.4,综上所述,当v=1或v=2.4时,ABP和PCQ全等【点睛】本题考查了全等三角形的性质,解题的关键在于能够利用分类讨论的思想求解4、证明见解析【分析】先根据角的和差可得,再根据三角形全等的判定定理证出,然后根据全等三角形的性质即可得证【详解】证明:,在和中,【点睛】本题考查了三角形全等的判定定理与性质等知识点,熟练掌握三角形全等的判定方法是解题关键5、(1)见解析;(2)见解析【分析】(1)根据CEAB,BFAC就可以得出BED=CFD=90,就可以由AAS得出结论;(2)由(1)得DE=DF,就可以得出BF=CE,由AAS就可以得出AFBAEC就可以得出结论【详解】证明:(1)CEAB,BFAC,BEDCFD90,在BED和CFD中,BEDCFD(AAS);(2)BEDCFD,DEDF,BD+DFCD+DE,BFCE,在ABF和ACE中,ABFACE(AAS),AEAF【点睛】本题考查了垂直的性质的运用,全等三角形的判定与性质的运用,等式的性质的运用,解答时证明三角形全等是关键