《精品解析2021-2022学年北师大版七年级数学下册第四章三角形综合练习试卷(含答案详解).docx》由会员分享,可在线阅读,更多相关《精品解析2021-2022学年北师大版七年级数学下册第四章三角形综合练习试卷(含答案详解).docx(27页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、北师大版七年级数学下册第四章三角形综合练习 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、一个三角形的两边长分别是3和5,则它的第三边可能为( )A2B4C8D112、一个三角形的两边长分别是3和7,且第
2、三边长为整数,这样的三角形周长最大的值为( )ABCD3、如图,在ABC和DEF中,AD,AFDC,添加下列条件中的一个仍无法证明ABCDEF的是()ABCEFBABDECBEDACBDFE4、如图,平分,连接,并延长,分别交,于点,则图中共有全等三角形的组数为( )ABCD5、如图,在和中,连接,交于点,连接下列结论:;平分;平分其中正确的个数为( )A1个B2个C3个D4个6、如图,ABAC,点D、E分别在AB、AC上,补充一个条件后,仍不能判定ABEACD的是( )ABCBADAECBECDDAEBADC7、如果一个三角形的两边长分别为5cm和8cm,则第三边长可能是( )A2cmB3c
3、mC12cmD13cm8、下列长度的三条线段,能组成三角形的是( )A3,4,8B5,6,11C1,3,5D5,6,109、已知线段AB9cm,AC5cm,下面有四个说法:线段BC长可能为4cm;线段BC长可能为14cm;线段BC长不可能为3cm;线段BC长可能为9cm所有正确说法的序号是( )ABCD10、已知:如图,D、E分别在AB、AC上,若ABAC,ADAE,A60,B25,则BDC的度数是()A95B90C85D80第卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、如图,直线ED把分成一个和四边形BDEC,的周长一定大于四边形BDEC的周长,依据的原理是_2、如
4、图,为等腰的高,其中分别为线段上的动点,且,当取最小值时,的度数为_3、如图,点在线段上以的速度由点向点运动,同时,点在线段上由点向点运动它们运动的时间为设点的运动速度为,若使得与全等,则的值为_4、如图,、分别为线段和射线上的一点,若点从点出发向点运动,同时点从点出发向点运动,二者速度之比为,运动到某时刻同时停止,在射线上取一点,使与全等,则的长为_ 5、如图,已知,则_三、解答题(5小题,每小题10分,共计50分)1、李华同学用11块高度都是1cm的相同长方体小木块,垒了两堵与地面垂直的木墙,木墙之间刚好可以放进一个正方形ABCD(ABC90,ABBC),点B在EF上,点A和C分别与木墙的
5、顶端重合,求两堵木墙之间的距离EF2、如图1,AE与BD相交于点C,ACEC,BCDC(1)求证:ABDE;(2)如图2,过点C作PQ交AB于P,交DE于Q,求证:CPCQ(3)如图3,若AB4cm,点P从点A出发,沿ABA方向以3cm/s的速度运动,点Q从点D出发,沿DE方向以1cm/s的速度运动,P、Q两点同时出发当点P到达点A时,P、Q两点同时停止运动设点P的运动时间为t(s)连接PQ,当线段PQ经过点C时,直接写出t的值为 3、在边长为10厘米的等边三角形ABC中,如果点M,N都以3厘米/秒的速度匀速同时出发(1)若点M在线段AC上由A向C运动,点N在线段BC上由C向B运动如图,当BD
6、6,且点M,N在线段上移动了2s,此时AMD和BND是否全等,请说明理由求两点从开始运动经过几秒后,CMN是直角三角形(2)若点M在线段AC上由A向点C方向运动,点N在线段CB上由C向点B方向运动,运动的过程中,连接直线AN,BM,交点为E,探究所成夹角BEN的变化情况,结合计算加以说明4、已知锐角,于,于F,交于E 求证:BDE 若BD=8,DC=6,求线段BE的长度 5、如图,点E、B在线段AB上,AEDB,BCEF,BCEF,求证:ACDF-参考答案-一、单选题1、B【分析】根据三角形的三边关系定理:三角形两边之和大于第三边,三角形的两边之差小于第三边,设第三边为,可得,再解即可【详解】
7、设第三边为,由题意得:,故选:B【点睛】此题主要考查了三角形的三边关系:掌握第三边大于已知的两边的差,而小于两边的和是解题的关键2、C【分析】先根据三角形的三边关系定理求得第三边的取值范围;再根据第三边是整数,从而求得周长最大时,对应的第三边的长【详解】解:设第三边为a,根据三角形的三边关系,得:7-3a3+7,即4a10,a为整数,a的最大值为9,则三角形的最大周长为9+3+7=19故选:C【点睛】本题考查了三角形的三边关系:三角形两边之和大于第三边,两边之差小于第三边3、A【分析】根据AF=DC求出AC=DF,再根据全等三角形的判定定理逐个判断即可【详解】解:AF=DC,AF+FC=DC+
8、FC,即AC=DF,A、BC=EF,AC=DF,A=D,不符合全等三角形的判定定理,不能推出ABCDEF,故本选项符合题意;B、AB=DE,A=D,AC=DF,符合全等三角形的判定定理SAS,能推出ABCDEF,故本选项不符合题意;CB=E,A=D,AC=DF,符合全等三角形的判定定理AAS,能推出ABCDEF,故本选项不符合题意;DACB=DFE,AC=DF,A=D,符合全等三角形的判定定理ASA,能推出ABCDEF,故本选项不符合题意;故选:A【点睛】本题考查了全等三角形的判定定理,能熟记全等三角形的判定定理是解此题的关键,注意:全等三角形的判定定理有SAS,ASA,AAS,SSS,两直角
9、三角形全等还有HL4、C【分析】求出BADCAD,根据SAS推出ADBADC,根据全等三角形的性质得出BC,ADBADC,求出ADEADF,根据ASA推出AEDAFD,根据全等三角形的性质得出AEAF,根据SAS推出ABFACE,根据AAS推出EDBFDC即可【详解】解:图中全等三角形的对数有4对,有ADBADC,ABFACE,AEDAFD,EDBFDC,理由是:AD平分BAC,BADCAD,在ADB和ADC中ADBADC(SAS),BC,ADBADC,EDBFDC,ADBEDBADCFDC,ADEADF,在AED和AFD中AEDAFD(ASA),AEAF,在ABF和ACE中ABFACE(SA
10、S),ABAC,AEAF,BECF,在EDB和FDC中EDBFDC(AAS),故选:C【点睛】本题考查了全等三角形的判定定理和性质定理,能综合运用定理进行推理是解此题的关键,注意:全等三角形的判定定理有SAS,ASA,AAS,SSS,全等三角形的对应边相等,对应角相等5、C【分析】由全等三角形的判定及性质对每个结论推理论证即可【详解】又,故正确由三角形外角的性质有则故正确作于,于,如图所示:则,在和中,在和中,平分故正确假设平分则即由知又为对顶角在和中,即AB=AC又故假设不符,故不平分故错误综上所述正确,共有3个正确故选:C【点睛】本题考查了全等三角形的判定及性质,灵活的选择全等三角形的判定
11、的方法是解题的关键,从判定两个三角形全等的方法可知,要判定两个三角形全等,需要知道这两个三角形分别有三个元素(其中至少一个元素是边)对应相等,这样就可以利用题目中的已知边角迅速、准确地确定要补充的边角,有目的地完善三角形全等的条件,从而得到判定两个三角形全等的思路6、C【分析】根据全等三角形的判定定理进行判断即可【详解】解:根据题意可知:ABAC,若,则根据可以证明ABEACD,故A不符合题意;若ADAE,则根据可以证明ABEACD,故B不符合题意;若BECD,则根据不可以证明ABEACD,故C符合题意;若AEBADC,则根据可以证明ABEACD,故D不符合题意;故选:C【点睛】本题考查了全等
12、三角形的判定,熟练掌握全等三角形的判定定理是解本题的关键7、C【分析】根据两边之和大于第三边,两边之差小于第三边可求得结果【详解】解:设第三边长为c,由题可知 ,即,所以第三边可能的结果为12cm故选C【点睛】本题主要考查了三角形的性质中三角形的三边关系知识点8、D【分析】根据围成三角形的条件逐个分析求解即可【详解】解:A、,3,4,8不能围成三角形,不符合题意;B、,5,6,11不能围成三角形,不符合题意;C、,1,3,5不能围成三角形,不符合题意;D、,5,6,10能围成三角形,符合题意,故选:D【点睛】此题考查了围成三角形的条件,解题的关键是熟练掌握围成三角形的条件围成三角形的条件:两边
13、之和大于第三边,两边只差小于第三边9、D【分析】分三种情况: C在线段AB上,C在线段BA的延长线上以及C不在直线AB上结合线段的和差以及三角形三边的关系分别求解即可【详解】解:线段AB9cm,AC5cm,如图1,A,B,C在一条直线上,BCABAC954(cm),故正确;如图2,当A,B,C在一条直线上,BCABAC9514(cm),故正确;如图3,当A,B,C不在一条直线上,95=4cmBC95=14cm,故线段BC可能为9cm,不可能为3cm,故,正确故选D【点睛】此题主要考查了三角形三边关系,线段之间的关系,正确分类讨论是解题关键10、C【分析】根据SAS证ABEACD,推出CB,求出
14、C的度数,根据三角形的外角性质得出BDCA+C,代入求出即可【详解】解:在ABE和ACD中,ABEACD(SAS),CB,B25,C25,A60,BDCA+C85,故选C【点睛】本题主要考查了全等三角形的性质与判定,三角形外角的性质,解题的关键在于能够熟练掌握全等三角形的性质与判定条件二、填空题1、三角形两边之和大于第三边【分析】表示出和四边形BDEC的周长,再结合中的三边关系比较即可【详解】解:的周长=四边形BDEC的周长=在中即的周长一定大于四边形BDEC的周长,依据是:三角形两边之和大于第三边;故答案为三角形两边之和大于第三边【点睛】本题考查了三角形三边关系定理,关键是熟悉三角形两边之和
15、大于第三边的知识点2、【分析】作,且,连接交于M,连接,证明,得到,当F为与的交点时,即可求出最小值;【详解】解:如图1,作,且,连接交于M,连接,是等腰三角形,在与中,当F为与的交点时,如图2,的值最小,此时,故答案为:【点睛】本题主要考查了全等三角形的判定与性质,准确计算是解题的关键3、或【分析】分两种情形:当时,可得:;当时, 根据全等三角形的性质分别求解即可【详解】解:当时,可得:, 运动时间相同,的运动速度也相同,;当时,故答案为:或【点睛】本题考查全等三角形的性质,路程、速度、时间之间的关系等知识,解题的关键是理解题意,灵活运用所学知识进行分类解决问题4、2或6或2【分析】设BE=
16、t,则BF=2t,使AEG与BEF全等,由A=B=90可知,分两种情况:情况一:当BE=AG,BF=AE时,列方程解得t,可得AG;情况二:当BE=AE,BF=AG时,列方程解得t,可得AG【详解】解:设BE=t,则BF=2t,AE=6-t,因为A=B=90,使AEG与BEF全等,可分两种情况:情况一:当BE=AG,BF=AE时,BF=AE,AB=6,2t=6-t,解得:t=2,AG=BE=t=2;情况二:当BE=AE,BF=AG时,BE=AE,AB=6,t=6-t,解得:t=3,AG=BF=2t=23=6,综上所述,AG=2或AG=6故答案为:2或6【点睛】本题主要考查了全等三角形的性质,利
17、用分类讨论思想是解答此题的关键5、59【分析】如图,过作证明证明再利用三角形的外角的性质求解 从而可得答案.【详解】解:如图,过作 , 而 , 故答案为:【点睛】本题考查的是平行线的性质,平行公理的应用,三角形的外角的性质,过作再证明是解本题的关键.三、解答题1、11cm【分析】根据ABE的余角相等求出EABCBF,然后利用“角角边”证明ABE和BCF全等,根据全等三角形对应边相等可得AEBF,BECF,于是得到结论【详解】解:AEEF,CFEF,AEBBFC90,EAB+ABE90,ABC90,ABE+CBF90,EABCBF,在ABE和BCF中,ABEBCF(AAS),AEBF5cm,BE
18、CF6cm,EF5+611(cm)【点睛】本题考查了全等三角形的判定和性质,掌握全等三角形的判定方法(即SSS、SAS、ASA、AAS和HL)和全等三角形的性质(即全等三角形的对应边相等、对应角相等)是解题的关键2、(1)见详解;(2)见详解;(3)1或2【分析】(1)由“SAS”可证ABCEDC,可得AE,可证ABDE;(2)由“ASA”可证DCQBCP,可得CPCQ;(3)由全等三角形的性质可得DQBP,列出方程可求解【详解】解:(1)证明:在ABC和EDC中,ABCEDC(SAS),AE,ABDE;(2)证明:ABDE,BD,在DCQ和BCP中,DCQBCP(ASA),CPCQ;(3)解
19、:由(2)可知:当线段PQ经过点C时,DCQBCP,可得DQBP,43tt或3t4t,t1或2故答案为:1或2【点睛】本题考查了全等三角形的判定和性质,掌握全等三角形的判定定理和性质定理是解本题的关键3、(1)证明见解析;经过或秒后,CMN是直角三角形;(2)BEN60,证明见解析【分析】(1)根据题意得出AMBD,ADBN,根据等边三角形的性质得到ABC60,利用SAS定理证明AMDBDN;分CNM90、CMN90两种情况,根据直角三角形的性质列式计算即可;(2)证明ABMCAN,根据全等三角形的性质得到ABMCAN,根据三角形的外角性质计算,得到答案【详解】(1)ABC为等边三角形,ABC
20、60,当点M,N在线段上移动了2s时,AM6厘米,CN6厘米,BNBCCN4厘米,AB10厘米,BD6厘米,AD4厘米,AMBD,ADBN,在AMD和BDN中,AMDBDN(SAS);设经过t秒后,CMN是直角三角形,由题意得:CM(103t)厘米,CN3t厘米,当CNM90时,C60,CMN30,CM2CN,即103t23t,解得:t,当CMN90时,CN2CM,即2(103t)3t,解得:t,综上所述:经过或秒后,CMN是直角三角形;(2)如图所示,由题意得:AMCN,在ABM和CAN中,ABMCAN(SAS),ABMCAN,BENABE+BAECAN+BAE60【点睛】本题考查了全等三角
21、形的判断以及列一元一次方程动点相关问题,两边和它们的夹角对应相等的两个三角形全等;一元一次方程与几何图形的相结合的题,多数会涉及到动点的问题,需要对动点的位置进行讨论,讨论时要注意讨论全面,做到不重不漏,通常会按照从左到右或从上到下的方位进行考虑4、(1)见解析;(2)10【分析】(1)由题意可得AD=BD,由余角的性质可得CBE=DAC,根据“ASA”可证BDEADC;(2)由全等三角形的性质可得AD=BD=4,CD=DF=3,BF=AC,由三角形的面积公式可求BE的长度【详解】(1)证明:,ABC=45ABC=BAD=45,AD=BD,DABC,BEACACD+DAC=90,ACD+CBE
22、=90CBE=DAC,AD=BD,ADC=ADB=90BDEADCASA);(2)BDEADCAD=BD=8,CD=DE=6,BE=AC【点睛】本题主要考查了全等三角形的判定与性质、勾股定理等知识点,灵活应用全等三角形的判定与性质成为解答本题的关键5、证明见解析【分析】根据平行线的性质和全等三角形的判定和性质解答即可【详解】证明:BCEF,CBAFED,AEDB,AE+BEBD+BE,即ABDE,在ABC与DEF中,ABCDEF(SAS),ACDF【点睛】本题考查了全等三角形的判定和性质:熟练掌握全等三角形的5种判定方法选用哪一种方法,取决于题目中的已知条件,若已知两边对应相等,则找它们的夹角或第三边