《最新北师大版九年级数学下册第一章直角三角形的边角关系章节测试试卷(含答案详细解析).docx》由会员分享,可在线阅读,更多相关《最新北师大版九年级数学下册第一章直角三角形的边角关系章节测试试卷(含答案详细解析).docx(32页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、九年级数学下册第一章直角三角形的边角关系章节测试 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、如图,琪琪一家驾车从地出发,沿着北偏东的方向行驶,到达地后沿着南偏东的方向行驶来到地,且地恰好位于地正东方向
2、上,则下列说法正确的是( )A地在地的北偏西方向上B地在地的南偏西方向上CD2、小金将一块正方形纸板按图1方式裁剪,去掉4号小正方形,拼成图2所示的矩形,若已知AB9,BC16,则3号图形周长为()ABCD3、在正方形网格中,ABC在网格中的位置如图,则sinB的值为()ABCD4、如图,等腰RtABC中,C90,AC5,D是AC上一点,若tanDBA,则AD()A1B2CD25、在ABC中,ACB90,AC1,BC2,则sinB的值为()ABCD6、如图,在的网格中,A,B均为格点,以点A为圆心,AB的长为半径作弧,图中的点C是该弧与格线的交点,则的值是( )ABCD7、如图,在ABC中,C
3、90,BC1,AB,则下列三角函数值正确的是()AsinABtanA2CcosB2DsinB8、如图,在平面直角坐标系中,直线与轴交于点C,与反比例函数在第一象限内的图象交于点B,连接BO,若,则的值是( )A-20B20C5D59、如图,ABC中,ABAC2,B30,ABC绕点A逆时针旋转(0120)得到ABC,BC与BC、AC分别交于点D、点E,设CD+DEx,AEC的面积为y,则y与x的函数图象大致为()ABCD10、在中,C=90,A、B、C的对边分别为、,则下列式子一定成立的是( )ABCD第卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、计算:_2、如图,AB
4、C中,BA=CB=AD,ACD30,tanBAC,CD6+8,则线段BC长度为 _3、如图,的顶点都在方格纸的格点上,则_4、如图,ABC的顶点是正方形网格的格点,则cosC_5、在RtBAC中,点是边的中点,点是边上一点,连接,将沿着翻折得到,连接,若,则点到边的距离为_三、解答题(5小题,每小题10分,共计50分)1、2、解方程(1)2x2+3x3(2)计算:4sin30+2cos45tan6023、居庸关位于距北京市区50余公里外的昌平区境内,是京北长城沿线上的著名古关城,有“天下第一雄关”的美誉某校数学社团的同学们使用皮尺和测角仪等工具,测量南关主城门上城楼顶端距地面的高度,下表是小强
5、填写的实践活动报告的部分内容:请你帮他计算出城楼的高度AD(结果精确到0.1m,sin350.574,cos350.819,tan350.700)题目测量城楼顶端到地面的高度测量目标示意图相关数据BM=16m, BC=13m,ABC=35,ACE=454、如图,已知矩形ABCD,点P从B出发,以1/s的速度沿边BC运动,(点P不与点C重合),连接AP,作,交矩形ABCD的边于N,设点P的运动时间为(1)时,则_;(2)若,求的值;(3)当N在CD边上时,且,求的面积;(4)当N在CD边上时,直接写出的取值范围5、如图,在中,(1)在线段上求作一点D,使得;(用尺规作图,不写作法,但应保留作图痕
6、迹)(2)若,利用上述作图,求的值-参考答案-一、单选题1、B【分析】根据题意可知,由此即可得到即可判断A;由可以判断B;由可以判断C;求出即可判断D【详解】解:如图所示:由题意可知,即在处的北偏西,故A不符合题意;,地在地的南偏西方向上,故B不符合题意;,故C错误,故D不符合题意故选B【点睛】本题考查的是解直角三角形和方向角问题,熟练掌握方向角的概念是解题的关键2、B【分析】设 而AB9,BC16,如图,由(图1)是正方形,(图2)是矩形,4号图形为小正方形,得到 再证明再建立方程求解,延长交于 则 再利用勾股定理求解 从而可得答案.【详解】解:如图,由题意得:(图1)是正方形,(图2)是矩
7、形,4号图形为小正方形, 设 而AB9,BC16, 结合(图1),(图2)的关联信息可得: 整理得: 解得: 经检验:不符合题意,取 延长交于 则 四边形是矩形, 所以3号图形的周长为: 故选B【点睛】本题考查的是矩形的判定与性质,正方形的性质,锐角三角函数的应用,一元二次方程的应用,从(图形1)与(图形2)中的关联信息中得出图形中边的相等是解本题的关键.3、A【分析】利用勾股定理先求出AB的长度,最后利用正弦值的定义得到,进而得到最终答案【详解】解:如图所示在中,由勾股定理可得: 故选:A【点睛】本题主要是考察了勾股定理和锐角三角函数的定义,掌握锐角三角函数的定义是解题的关键4、B【分析】过
8、点D作,根据已知正切的定义得到,再根据等腰直角三角形的性质得到,再根据勾股定理计算即可;【详解】过点D作,tanDBA,是等腰直角三角形,AC5,在等腰直角中,由勾股定理得故选B【点睛】本题主要考查了解直角三角形,等腰直角三角形,勾股定理,准确计算是解题的关键5、A【分析】先根据勾股定理求出斜边AB的值,再利用正弦函数的定义计算即可【详解】解:在ABC中,ACB=90,AC=1,BC=2,AB=,sinB=,故选:A【点睛】本题考查了锐角三角函数的定义,勾股定理解决此类题时,要注意前提条件是在直角三角形中,此外还有熟记三角函数的定义6、B【分析】利用,得到BAC=DCA,根据同圆的半径相等,A
9、C=AB=3,再利用勾股定理求解 可得tanACD=,从而可得答案.【详解】解:如图, , BAC=DCA 同圆的半径相等, AC=AB=3,而 在RtACD中,tanACD= tanBAC=tanACD= 故选B【点睛】本题主要考查了解直角三角形的应用,利用图形的性质进行角的等量代换是解本题的关键7、D【分析】根据正弦、余弦及正切的定义直接进行排除选项【详解】解:在ABC中,C90,BC1,AB,;故选D【点睛】本题主要考查三角函数,熟练掌握三角函数的求法是解题的关键8、D【分析】先根据直线解析式求得点C的坐标,然后根据BOC的面积求得BD的长,然后利用正切函数的定义求得OD的长,从而求得点
10、B的坐标,利用待定系数法将点B坐标代入即可求得结论【详解】解:直线y=k1x+4与x轴交于点A,与y轴交于点C,点C的坐标为(0,4),OC=4,过B作BDy轴于D,SOBC=2,BD=1,tanBOC=,OD=5,点B的坐标为(1,5),反比例函数在第一象限内的图象交于点B,k2=15=5故选:D【点睛】本题考查了反比例函数与一次函数的交点坐标,锐角三角函数,三角形面积,待定系数法求分别列函数解析式,解题的关键是作辅助线构造直角三角形9、B【分析】先证ABFACE(ASA),再证BFDCED(AAS),得出DE+DC=DE+DB=BE=x,利用锐角三角函数求出,AG=ACsin30=1,根据
11、三角形面积列出函数解析式是一次函数,即可得出结论【详解】解:设BC与AB交于F,ABC绕点A逆时针旋转(0120)得到ABC,BAF=CAE=,AB=AC=AB=AC,B=C=B=C=30,在ABF和ACE中,ABFACE(ASA),AF=AE,AB=AC,BF=AB-AF=AC-AE=CE,在BFD和CED中,BFDCED(AAS),BD=CD,FD=ED,DE+DC=DE+DB=BE=x,过点A作AGBC于G,AB=AC,BG=CG,AC=2,cosC=,AG=ACsin30=1EC=是一次函数,当x=0时,故选择B【点睛】本题考查等腰三角形性质,图形旋转,三角形全等判定与性质,解直角三角
12、形,三角形面积,列一次函数解析式,识别函数图像,本题综合性强,难度大,掌握以上知识是解题关键10、B【分析】根据题意,画出直角三角形,再根据锐角三角函数的定义对选项逐个判断即可【详解】解:由题意可得,如下图:,则,A选项错误,不符合题意;,则,B选项正确,符合题意;,则,C选项错误,不符合题意;,则,D选项错误,不符合题意;故选B,【点睛】此题考查了锐角三角函数的定义,解题的关键是画出图形,根据锐角三角函数的定义进行求解二、填空题1、【分析】先求出特殊角的三角函数值,再计算即可【详解】解:=【点睛】本题考查了特殊角三角函数值的计算,解题关键是熟记特殊角三角函数值2、【分析】作AFDC于点F,作
13、BEAC于点E,首先根据tanBAC表示出,然后根据等腰三角形的性质和30角直角三角形的性质表示出AC和AF的长度,然后根据勾股定理表示出FC和FD的长度,最后根据CD的长度列方程求解即可【详解】如图所示,作AFDC与点F,作BEAC与点E,tanBAC,BEAC设,BEACAFDC,ACD30在中,在中,解得:,故答案为:10【点睛】此题考查了勾股定理,解直角三角形,等腰三角形的性质,30角直角三角形的性质,解题的关键是根据题意正确作出辅助线,以及熟练掌握以上知识点和性质定理3、【分析】延长 至格点,连接,再利用勾股定理逆定理,可得是直角三角形,即可求解【详解】解:如图,延长 至格点,连接,
14、由勾股定理得,是直角三角形,故答案为:【点睛】本题主要考查了锐角三角函数,勾股定理逆定理,做出适当的辅助线得到是直角三角形是解题的关键4、#【分析】如图所示,连接BE,先计算出CE、BE、BC的长,即可利用勾股定理的逆定理得到CEB=90,由此求解即可【详解】解:如图所示,连接图中BE,由勾股定理得:,CEB是直角三角形,CEB=90,故答案为:【点睛】本题主要考查了勾股定理和勾股定理的逆定理,余弦,解题的关键在于能够找到E点构造直角三角形5、【分析】如图所示,过点E作EHAC于D,由翻折的性质可得,AE=EG,AD=DG,EAD=DGE=45,ADE=GDE,则AH=EH,设,则,利用勾股定
15、理先求出,根据,即可得到,求出,从而求出,证明DGC=DCG,求出,得到,过点D作DMBC于M,过点G作GNBC于N,则,证明GDE=DGC,得到DEGC,则DEC=GCE,再由,推出,设,则,由,得到,由此求解即可【详解】解:如图所示,过点E作EHAC于D,由翻折的性质可得,AE=EG,AD=DG,EAD=DGE=45,ADE=GDE,AEH=45,AH=EH,设,则,在直角ABC中,由勾股定理得,解得,D是AC的中点, ,DGC=DCG,过点D作DMBC于M,过点G作GNBC于N,DGC+DCG+CDG=180,ADE+GDE+CDG=180,GDE=DGC,DEGC,DEC=GCE,设,
16、则,解得或,当时,不符合题意,即点G到BC的距离为,故答案为:【点睛】本题主要考查了解直角三角形,勾股定理,折叠的性质,平行线的性质与判定,等腰三角形的性质与判定,解题的关键在于能够正确作出辅助线进行求解三、解答题1、【分析】先去掉绝对值,再计算三角函数值和零指数幂,然后化简算术平方根后可以得解【详解】解:原式=【点睛】本题考查实数的运算,熟练掌握特殊角的三角函数值、零指数幂的计算和算术平方根的化简和计算是解题关键2、(1);(2)【分析】(1)利用公式法求解即可得;(2)将特殊锐角的三角函数值代入,再计算乘法,最后计算加减法即可得【详解】解:(1)化成一般形式为,此方程中的,则,即,故方程的
17、解为;(2)原式,【点睛】本题考查了解一元二次方程、特殊角的三角函数值的混合运算,熟练掌握方程的解法和特殊角的三角函数值是解题关键3、城楼顶端距地面约为31.9m【分析】根据题意,设AE为x m,在RtACE中,tanABE=,进而列出方程,求得,根据 AD=AE+ED即可求解【详解】解:根据题意,得BM=ED=16m,AEC=90设AE为x m,在RtACE中,ACE=45,CAE=45,AE=CE 在RtABE中,tanABE=, 又ABE=35,tan35= 即解得x30.3AD=AE+ED30.3+1631.9(m) 答:城楼顶端距地面约为31.9m【点睛】本题考查了解直角三角形的应用
18、,数形结合是解题的关键4、(1);(2);(3);(4),【分析】(1)由矩形可推出,由对应边成比例即可求出CN(2)由垂直性质可得出PE/BD,进而求得,由对应边成比例即可列出关于t的一元一次方程(3)由(1)可得,又由可知,故可求得此时t=1,即可求得PC、NC的值,由三角形面积公式即可求得的面积(4)由(3)可知当t=1时,N点与D点重合,又由矩形对称性可知,当PC=6-t=1时,即t=5时,N点又与D点重合,则可知当,时N在CD边上【详解】(1)当时,BP=,PC=BC- BP=6-=四边形ABCD为矩形ABP=BCD=90BAP+BPA=90又BPA+APN+NPC=180BPA +
19、NPC=90BAP=NPC即(2)如图所示,连接BD,AP与BD交点标为点M,设BP为t,则PC=6-t,若则AMD=90则AMD=APNPE/BDDBC=NPC,BDC=PNC由(1)问知即(3)由(1)问可知解得此时t=1, 则BP=1,PC=5,由(1)问知,且N点与D点重合(4)如图所示,由(3)问可知,当t=1时,N点与D点重合,则时N在CD边上由矩形对称性可知,当PC=6-t=1时,N点又与D点重合且向C点移动故当t=5时,N点与D点重合,则时N在CD边上综上所述当,时N在CD边上【点睛】本题考查了矩形上的动点问题、相似三角形的判断及性质、解直角三角形,求解特殊四边形的动点问题,关键是是利用图解法抓住它运动中的某一瞬间,寻找合理的代数关系式,确定运动变化过程中的数量关系,图形位置关系,分类画出符合题设条件的图形进行讨论,就能找到解决的途径,有效避免思维混乱5、(1)见解析;(2)【分析】(1)作的垂直平分线,交于点,则点即为所求;(2)根据(1)的结论可得,设,则,进而根据正切的定义即可求得答案【详解】解:(1)如图,作的垂直平分线,交于点,则点即为所求,连接 (2)设,则【点睛】本题考查了等腰三角形的性质,三角形的外角性质,垂直平分线的性质,正切的定义,勾股定理,掌握以上知识是解题的关键