《2022中考特训浙教版初中数学七年级下册第五章分式定向训练试卷(含答案详解).docx》由会员分享,可在线阅读,更多相关《2022中考特训浙教版初中数学七年级下册第五章分式定向训练试卷(含答案详解).docx(18页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、初中数学七年级下册第五章分式定向训练(2021-2022学年 考试时间:90分钟,总分100分)班级:_ 姓名:_ 总分:_题号一二三得分一、单选题(10小题,每小题3分,共计30分)1、研究发现新冠肺炎病毒大小约为0.000000125米,数0.000000125用科学记数法表示为()A125109B12.5108C1.25107D1.251062、化简的结果是( )ABCD3、据医学研究:新型冠状病毒的平均米,米用科学记数法表示为( )A米B米C米D米4、己知关于x的分式的解为非负数,则a的范围为( )A且B且C且D且5、已知(),则分式的值为( )A2B2C3D36、已知实数满足,则下列
2、结论:若,则;若,则;若,则;若,则,其中正确的个数是( )A1B2C3D47、若关于的方程的解是正数,则的取值范围为( )ABC且D且8、已知,则的值为( )ABCD9、计算(1)023正确的是()ABC6D710、设甲、乙、丙为三个连续的正偶数,已知甲的倒数与丙的倒数的2倍之和等于乙的倒数的3倍,设乙为x,所列方程正确的是( )ABCD二、填空题(5小题,每小题4分,共计20分)1、已知xy2,1,求x2yxy2_2、已知,用,表示的式子为_3、有一批的新冠肺炎疫苗需要在规定日期内完成生产,如果交给中国独做,恰好如期完成,如果美国独做,就要超过规定4天,现在由中国和美国合作2天,剩下的由美
3、国独做,也刚好在规定日期内完成,问中国独自完成这一批新冠肺炎疫苗需要_天4、3031()2_5、若分式有意义,则x的取值范围是 _三、解答题(5小题,每小题10分,共计50分)1、计算:2、(1); (2);(3);(4)先化简,再求值:,其中(5)已知,求代数式的值3、解方程:4、解方程组:(1);(2);(3),求的值.5、先化简,再求值:,其中-参考答案-一、单选题1、C【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a10-n,与较大数的科学记数法不同的是其所使用的是负整数指数幂,指数n由原数左边起第一个不为零的数字前面的0的个数所决定【详解】解:0.000000125=
4、1.2510-7,故选:C【点睛】本题考查用科学记数法表示较小的数,一般形式为a10-n,其中1|a|10,n为由原数左边起第一个不为零的数字前面的0的个数所决定2、D【分析】由题意直接根据负整数指数幂的意义进行计算即可求出答案【详解】解:.故选:D.【点睛】本题考查负整数指数幂的意义,熟练掌握负整数指数幂的运算法则即是解题的关键.3、D【分析】根据科学记数法:把一个大于0的数表示成的形式(其中,n是整数),由此问题可求解【详解】解:把米用科学记数法表示为米;故选D【点睛】本题主要考查科学记数法,熟练掌握科学记数法是解题的关键4、A【分析】先求出分式方程的解,然后根据分式方程的解是非负数以及分
5、式有意义的条件求解即可.【详解】解:,分式方程的解为非负数且分式方程要有意义,解得且,故选A.【点睛】本题主要考查了解分式方程以及分式方程有意义的条件,解题的关键在于能够熟练掌握相关知识进行求解.5、C【分析】由题意可知x=3y,然后根据因式分解法进行化简,再将x=3y代入原式即可求出答案【详解】解:x-3y=0,x=3y,原式= 故选:C【点睛】本题考查分式的运算,解题的关键是熟练运用因式分解法将分式化简,再把x换成3y6、D【分析】转化为,即可求解;先求出,再求出,即可得到答案;将变形求出值为1,再将变形求出值也为1,即可得到答案;将进行变形为,再将整体代入,即可得到答案【详解】解:因为,
6、所以,故此项正确;因为,则所以,解得:;所以,所以,故此项正确;因为,所以,;所以,故此项正确;因为,所以,故此项正确;故选D【点睛】本题考查完全平方公式、分式的加法以及整体代入方法,解答本题的关键是明确题意,求出学会整体代入7、C【分析】先解分式方程求解,根据方程的解为正数,求出a的范围,然后将方程的增根代入求出,所以a的取值范围是且【详解】解:解方程,得,是方程的增根,当时,解得,即当时,分式方程有增根,a的取值范围是且故选:C【点睛】本题考查了分式方程的解,熟练解分式方程是解题的关键8、C【分析】根据可得,将代入化简可得结果【详解】解:,将代入中得:,故选:C【点睛】本题考查了分式的化简
7、求值,将代入中约分化简是解题的关键9、B【分析】根据负指数幂运算法则a-p=(a0,p为正整数),零指数幂运算法则:a0=1(a0)进行计算即可得出答案【详解】解:原式=故选:B【点睛】本题主要考查了负指数幂及零指数幂,熟练应用负指数幂和零指数幂的运算法则进行计算是解决本题的关键10、C【分析】因为甲、乙、丙为三个连续的正偶数,设乙为x,则甲为,丙为,然后根据已知甲的倒数与丙的倒数的2倍之和等于乙的倒数的3倍列出方程即可【详解】解:甲、乙、丙为三个连续的正偶数,设乙为x,则甲为,丙为,根据题意得:,故选:C【点睛】本题考查了分式方程的应用,读懂题意,找准等量关系是解决本题的关键二、填空题1、【
8、分析】将变形后得到,再将多项式因式分解后整体代入可得结论【详解】解:,,原式,故答案是:【点睛】本题主要考查了因式分解的应用,解题的关键是将要求的代数式因式分解,并整体代入2、【分析】根据分式的性质,将等式中的分式化为整式,再用,表示即可【详解】,即,故答案为:【点睛】本题考查了分式的性质,等式的性质,掌握分式的性质是解题的关键3、4【分析】设中国需要x天,则美国需要(x+4)天,结合等量关系“中国2天的工作量+美国x天的工作量=工作总量”列出方程即可;【详解】解:设中国需要x天,由题意可得:, 解得x=4经检验:x=4是方程的解,且符合题意,故答案为:4【点睛】本题考查分式方程的应用解决本题
9、的关键是得到工作量11的等量关系;易错点是得到甲乙两队各自的工作时间4、27【分析】原式先计算零指数幂和负整数指数幂,再计算乘法运算,即可得到结果【详解】解:3031()2=27故答案为:27【点睛】本题考查了零指数幂、负整数指数幂以有理数的乘除运算,熟练掌握运算法则是解答本题的关键5、【分析】根据分母不等于零分式有意义,可得答案【详解】解:分式有意义, 解得,故答案为:【点睛】本题考查的是分式有意义的条件,熟知分式有意义的条件是分母不等于零是解答此题的关键三、解答题1、5【分析】先化简绝对值、计算零指数幂、负整数指数幂、去括号,再计算加减法即可得【详解】解:原式,【点睛】本题考查了零指数幂、
10、负整数指数幂等知识点,熟练掌握各运算法则是解题关键2、(1)-1;(2);(3)1;(4),11;(5)-10【分析】(1)先计算绝对值、负整指数幂、零指数幂、以及有理数的乘方计算即可;(2)根据幂的运算法则计算即可;(3)利用平方差公式进行计算即可;(4)先根据整式的混合运算法则化简,再根据绝对值和偶数方的非负性得出x和y的值代入即可;(5)先得出,再根据整式的混合运算法则化简代入即可;【详解】解:(1)原式;(2)原式;(3)原式;(4)原式,由,所以,解得,所以原式(5)原式由得,所以原式=-4-6=-10【点睛】本题考查了实数的混合运算、整式的混合运算、幂的混合运算,熟练掌握运算法则是
11、解题的关键3、【分析】先去分母,化为整式方程,解出整式方程,然后再检验,即可求解【详解】解:去分母,方程两边都乘以得:,整理得:,检验:当时,原方程的解为:【点睛】本题主要考查了解分式方程,熟练掌握解分式方程的基本步骤是解题的关键4、(1);(2)当时,;(3)【分析】(1)设,方程组变形为关于a与b的方程组,求出解得到a与b的值,即可求出x与y的值;(2)利用加减消元法求解即可;(3)先求出,再利用加减消元法可分别求出,代入计算后即可求得代数式的值【详解】解:(1),解:设,则原方程组可化为,2+3得:,则,把代入得:,则,即,5-得:,即,把代入得:,经检验,方程组的解为;(2),3,得,当时,将代入,得,解得,当时,原方程组的解为;(3),+,得,则,-,得,-,得,【点睛】此题主要考查了解二元一次方程组,利用了换元的思想,熟练加减消元法与代入消元法是解本题的关键5、;1【分析】将分式通分相加然后约分,代入求值即可【详解】解:原式=,当时,原式=1【点睛】本题考查了分式的化简求值,熟练掌握分式的运算法则是解题的关键