《2022中考特训浙教版初中数学七年级下册第五章分式定向训练试题(含解析).docx》由会员分享,可在线阅读,更多相关《2022中考特训浙教版初中数学七年级下册第五章分式定向训练试题(含解析).docx(15页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、初中数学七年级下册第五章分式定向训练(2021-2022学年 考试时间:90分钟,总分100分)班级:_ 姓名:_ 总分:_题号一二三得分一、单选题(10小题,每小题3分,共计30分)1、如图所示是番茄果肉细胞结构图,番茄果肉细胞的直径约为0.0006米,将0.0006用科学记数法表示为( )ABCD2、若表示一个整数,则整数可取值共有( )A3个B4个C5个D6个3、下列计算结果正确的是( )ABCD4、新冠疫苗载体腺病毒的直径约为0.000085毫米,将数0.000085用科学记数法表示为( )A8510-6B8.510-5C8.510-6D0.8510-45、若,则的值为( )A0B1C
2、2D36、2020年6月23日9时43分,我国成功发射了北斗系统第55颗导航卫星,其授时精度为世界之最,不超过0.0000000099秒将数据0.0000000099用科学记数法表示为( )ABCD7、若 ,则 ( )ABCD8、下列运算正确的是()Ax2B(x3)2x5C(xy)3x3y3Dx6x2x39、纳米工艺射频基带一体化导航定位芯片,已实现规模化应用.22纳米米,将0.000000022用科学记数法表示为( )ABCD10、一项工作,甲、乙两人合作,4天可以完成他们合作了3天后,乙另有任务,甲单独又用了天才全部完成问甲、乙两人单独做,各需几天完成?设甲单独做需要x天,根据题意可列出方
3、程()ABCD二、填空题(5小题,每小题4分,共计20分)1、计算:_2、已知a、b为实数,且,设,则M、N的大小关系是M_ N(填=、)3、已知,则a,b,c的大小关系为_4、按照如图所示的流程图,若输出的M6,则输入的m是_5、某种油漆中的染料颗粒的直径大约为米,如果将若干个这种染料颗粒排成一排,其长度恰好为1米,那么这一排颗粒的个数大约为_个三、解答题(5小题,每小题10分,共计50分)1、计算或化简: (1);(2)2、计算下列各题:(1);(2);(3);(4)3、探索发现:1;根据你发现的规律,回答下列问题:(1) , ;(2)利用你发现的规律计算:4、解方程(组):(1);(2)
4、5、某校为了准备“迎新活动”,用900元购买了甲、乙两种礼品共240个,其中购买甲种礼品比乙种礼品少用了180元(1)购买甲种礼品一共用去_元;(请直接写出答案)(2)如果甲种礼品的单价是乙种礼品单价的2倍,那么乙种礼品的单价是多少元?-参考答案-一、单选题1、B【分析】绝对值小于1的数也可以利用科学记数法表示,一般形式为a10-n,与较大数的科学记数法不同的是其所使用的是负整数指数幂,指数n由原数左边起第一个不为零的数字前面的0的个数所决定【详解】解:0.0006=610-4 故选B【点睛】本题主要考查了用科学记数法表示较小的数,一般形式为a10-n,其中1|a|10,n为由原数左边起第一个
5、不为零的数字前面的0的个数所决定2、D【分析】由x是整数,也表示一个整数,可知x+1为4的约数,即x+1=1,2,4,从而得出结果【详解】解:x是整数,也表示一个整数,x+1为4的约数,即x+1=1,2,4,x=-2,0,-3,1,-5,3则整数x可取值共有6个故选:D【点睛】本题考查了此题首先要根据分式值是整数的条件,能够根据已知条件分析出x+1为4的约数,是解决本题的关键3、C【分析】根据运算的法则逐一运算判断即可【详解】解:,故此选项错误;:,故此选项错误;:,故此选项正确;:,故此选项错误;故答案为:【点睛】本题主要考查了同类型的合并,同底数幂的乘法,负指数幂,零指数幂,熟悉掌握运算的
6、法则是解题的关键4、B【分析】由题意依据绝对值小于1的正数也可以利用科学记数法表示,一般形式为a10-n,与较大数的科学记数法不同的是其所使用的是负整数指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定进行分析即可【详解】解: 0.000085=8.510-5, 故选:B.【点睛】本题考查用科学记数法表示较小的数,一般形式为a10-n,其中1|a|10,n为由原数左边起第一个不为零的数字前面的0的个数所决定5、A【分析】由题意可得:,通过整理得:,则可求得【详解】解:,故选:【点睛】本题主要考查了零指数幂法则,解答的关键是明确非0实数的0次方等于16、C【分析】绝对值小于1的正数也
7、可以利用科学记数法表示,一般形式为 a,与较大数的科学记数法不同的是其所使用的是负整数指数幂,指数 n 由原数左边起第一个不为零的数字前面的0的个数所决定【详解】解: 0.0000000099=,故选:C【点睛】本题考查用科学记数法表示较小的数,一般形式为 a,其中 1|a|10 , n 为由原数左边起第一个不为零的数字前面的0的个数所决定7、B【分析】先利用的值,求出,再利用负整数指数幂的运算法则,得到的值【详解】解:,或(舍去),故选:B【点睛】本题主要是考查了开二次根式以及负整数指数幂的运算法则,熟练掌握负整数指数幂的运算法则:,是解决本题的关键8、C【分析】根据负整指数幂,幂的乘方运算
8、,积的乘方,同底数幂的除法逐项分析即可【详解】A. x2,故该选项不正确,不符合题意;B. (x3)2x6,故该选项不正确,不符合题意;C. (xy)3x3y3,故该选项正确,符合题意;D. x6x2x4,故该选项不正确,不符合题意;故选C【点睛】本题考查了负整数指数幂,幂的乘方运算,积的乘方,同底数幂的除法,掌握以上运算法则是解题的关键9、B【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为,与较大数的科学记数法不同的是其所使用的是负整数指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定【详解】解:将0.000000022用科学记数法表示为故选:B【点睛】本题考查用科
9、学记数法表示较小的数,一般形式为,其中,n为由原数左边起第一个不为零的数字前面的0的个数所决定10、B【分析】设甲单独完成需要x天,根据题意列出方程即可求出答案【详解】解:设甲单独完成需要x天,由题意可知:两人合作的效率为,甲的效率为31,即故选B【点睛】本题考查分式方程,解题的关键是正确找出题中的等量关系,本题属于基础题型二、填空题1、#【分析】原式通分并利用同分母分式的减法法则计算,即可得到结果【详解】解:原式故答案为:【点睛】本题考查了整式与分式的加减运算,如果一个分式与一个整式相加减,那么可以把整式的分母看成1,先通分,再进行加减运算2、=【分析】本题只需要先对M、N分别进行化简,再把
10、代入即可比较M、N的大小【详解】解:,MN,故答案为:【点睛】本题考查了分式的混合运算,在解题时要注意先对分式进行化简,再代入求值即可3、【分析】分别求出各数的值,再比较大小即可【详解】解:,;,;故答案为:【点睛】本题考查了负指数、0指数和乘方运算,解题关键是熟记负指数、0指数和乘方运算的法则,准确进行计算4、2【分析】根据题目中的程序,利用分类讨论的方法可以分别求得m的值,从而可以解答本题【详解】解:当m2-2m0时,解得m=2,经检验,m=2是原方程的解,并且满足m2-2m0;当m2-2m0时,m-3=6,解得m=9,不满足m2-2m0,舍去故输入的m为2故答案为:2【点睛】本题考查有理
11、数的混合运算,解答本题的关键是明确有理数混合运算的计算方法5、【分析】根据长度除以染料颗粒的直径即可求得这一排颗粒的个数【详解】解:一排颗粒的个数大约为(个故答案为:【点睛】本题考查了科学记数法的应用,正确的计算是解题的关键三、解答题1、(1)2;(2)【分析】(1)先计算负整数指数幂、零指数幂和去绝对值,最后加法计算即可;(2)先计算积的乘方,再进行单项式的乘除运算即可【详解】解:(1)=2;(2) =【点睛】本题主要考查了整数指数幂的相关运算以及整式的乘除运算,属于基础题,熟练掌握运算法则是解题的关键2、(1);(2);(3);(4)【分析】(1)根据乘方,负整数指数幂,零指数幂等运算法则
12、计算即可;(2)根据平方差公式可是计算过程变得简便;(3)根据积的乘方,幂的乘方,同底数幂乘除法等运算法则计算即可;(4)根据平方差公式以及完全平方公式计算即可得出答案【详解】解:(1)原式;(2)原式;(3)原式;(4)原式【点睛】本题考查了乘方,负整数指数幂,零指数幂,积的乘方,幂的乘方,同底数幂乘除法平方差公式以及完全平方公式等知识点,熟知相关运算法则是解本题的关键3、(1),;(2)【分析】(1)观察已知等式,写出所求即可;(2)归纳总结得到一般性规律,写出即可;【详解】解:(1),(2)原式 , 【点睛】此题考查了有理数的混合运算,以及规律型:数字的变化类,弄清题中的规律是解本题的关
13、键4、(1);(2)【分析】(1)根据代入消元法解二元一次方程组即可;(2)将分式方程转化为整式方程,求解验根即可【详解】解:(1)由得代入得, , 方程组的解为; (2) 经检验,是原方程的解 【点睛】本题主要考查了解二元一次方程组以及解分式方程,熟练掌握解二元一次方程组的两种消元方法以及解分式方程的一般步骤是解题的关键,注意解分式方程需要验根5、(1)360;(2)3元【分析】(1)购买甲种礼品一共用去x元,则购买乙种礼品一共用去(180+x)元,然后根据一共花了900元,列出方程求解即可;(2)设乙种礼品单价是y元,则甲种礼品单价是2y元,然后根据用900元购买了甲、乙两种礼品共240个,列出方程求解即可【详解】解:(1)购买甲种礼品一共用去x元,则购买乙种礼品一共用去(180+x)元,由题意得:x+180+x=900,解得:x=360,购买甲种礼品一共用去360元,故答案为360;(2)设乙种礼品单价是y元,则甲种礼品单价是2y元,由题意得:,解得:y3,经检验,y3是原方程的根,并符合题意,答:乙种礼品的单价是3元【点睛】本题主要考查了一元一次方程的应用,分式方程的应用,解题的关键在于能够准确理解题意,列出方程求解