《2022年强化训练京改版九年级数学下册第二十三章-图形的变换同步测评试题(含详细解析).docx》由会员分享,可在线阅读,更多相关《2022年强化训练京改版九年级数学下册第二十三章-图形的变换同步测评试题(含详细解析).docx(25页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、九年级数学下册第二十三章 图形的变换同步测评 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、下列图形中,既是轴对称图形,又是中心对称图形的是( )ABCD2、下列图形中,是中心对称图形的是( )ABCD3
2、、下面是福州市几所中学的校标,其中是轴对称图形的是()ABCD4、如果点P(2,b)和点Q(a,3)关于x轴对称,则a+b=()A1B1C5D55、已知点A(2,a)和点B(2,3)关于原点对称,则a的值为( )A2B2C3D36、已知点M(2,3),点N与点M关于x轴对称,则点N的坐标是()A(2,3)B(2,3)C(3,2)D(2,3)7、在平面直角坐标系中,点关于轴的对称点的坐标是( )ABCD8、下列图形中,既是轴对称图形又是中心对称图形的是( ) A等边三角形B平行四边形C正五边形D正六边形9、在平面直角坐标系中,点(1,3)关于原点对称的点的坐标是 ( )A( - 1, - 3)B
3、( - 1,3)C(1, - 3)D(3,1)10、如图,矩形ABCD的边BC在x轴上,点A在第二象限,点D在第一象限,AB ,OD4,将矩形ABCD绕点O顺时针旋转,使点D落在x轴的正半轴上,则点C对应点的坐标是( )A(,)B(,)C(,)D(,)第卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、若一次函数ykx+8(k0)的图象与x轴、y轴分别交于A、B两点,当k的取值变化时,点A随之在x轴上运动,将线段AB绕点B逆时针旋转90得到BQ,连接OQ,则OQ长的最小值是 _2、如图,在RtABC中,C90,ABC30,AC3,将RtABC绕点A逆时针旋转得到RtABC,
4、使点C落在AB边上,连接BB,则BB的长度为 _3、如图,在平面直角坐标系中,一次函数y2x4的图像与x轴、y轴分别交于点A、B,将直线AB绕点B顺时针旋转45,交x轴于点C,则直线BC的函数表达式为_4、如图,在平面直角坐标系中,点在第一象限内,点在轴正半轴上,是以点为位似中心,在第三象限内与的相似比为的位似图形若点的坐标为,则点的坐标为 _5、如图,已知点A(2,0),B(0,4),C(2,4),若在所给的网格中存在一点D,使得CD与AB垂直且相等(1)直接写出点D的坐标_;(2)将直线AB绕某一点旋转一定角度,使其与线段CD重合,则这个旋转中心的坐标为_三、解答题(5小题,每小题10分,
5、共计50分)1、如图,在由边长为1个单位长度的小正方形组成的网格中,给出了以格点(网格线的交点)为端点的线段AB,线段MN在网格线上(点M,N是格点)(1)画出线段AB绕点N顺时针旋转90得到的线段(点,分别为A,B的对应点);(2)在问题(1)的旋转过程中,求线段AB扫过的面积2、如图,在ABC中,CAB70,在同一平面内,将ABC绕点A旋转到ABC的位置,使得CCAB,求CCA的度数3、如图,在边长为1个单位长度的小正方形组成的网格中,ABC的顶点A、B、C在小正方形的顶点上,将ABC向右平移3单位,再向上平移2个单位得到三角形A1B1C1(1)在网格中画出三角形A1B1C1(2)A1B1
6、与AB的位置关系 4、如图,在带有网格的平面直角坐标系中,网格边长为一个单位长度,给出了三角形ABC(1)作出关于x轴对称的;(2)以坐标原点为位似中心在图中的网格中作出的位似图形,使与的位似比为1:2;(3)若的面积为3.5平方单位,求出的面积5、如图,在中,点,分别在边,上,且,此时,成立(1)将绕点逆时针旋转时,在图中补充图形,并直接写出的长度;(2)当绕点逆时针旋转一周的过程中,与的数量关系和位置关系是否仍然成立?若成立,请你利用图证明,若不成立请说明理由;(3)将绕点逆时针旋转一周的过程中,当,三点在同一条直线上时,请直接写出的长度-参考答案-一、单选题1、B【分析】根据轴对称图形与
7、中心对称图形的概念求解【详解】解:A不是中心对称图形,是轴对称图形,故此选项不合题意;B是轴对称图形,也是中心对称图形,故此选项符合题意;C是轴对称图形,不是中心对称图形,故此选项不合题意;D不是轴对称图形,是中心对称图形,故此选项不合题意故选:B【点睛】此题主要考查了中心对称图形与轴对称图形的概念:轴对称图形:如果一个图形沿着一条直线对折后两部分完全重合,这样的图形叫做轴对称图形;中心对称图形:在同一平面内,如果把一个图形绕某一点旋转180,旋转后的图形能和原图形完全重合,那么这个图形就叫做中心对称图形2、C【分析】根据中心对称图形的概念:一个平面图形绕某一点旋转180,如果旋转后的图形能够
8、和原图形重合,那么这个图形叫做中心对称图形,这个点就是对称中心. 根据中心对称图形的概念对各选项进行一一分析判定即可求解【详解】A、不是中心对称图形,不符合题意;B、不是中心对称图形,不符合题意;C、是中心对称图形,符合题意;D、不是中心对称图形,不符合题意故选:C【点睛】本题考查了中心对称图形,掌握好中心对称图形,中心对称图形是要寻找对称中心,旋转180度后能够与原来的图形重合3、A【分析】结合轴对称图形的概念进行求解即可【详解】A、是轴对称图形,本选项符合题意;B、不是轴对称图形,本选项不合题意;C、不是轴对称图形,本选项不合题意;D、不是轴对称图形,本选项不合题意故选:A【点睛】本题考查
9、了轴对称图形的概念,轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合4、B【分析】根据关于x轴对称的点,横坐标相同,纵坐标互为相反数,求出a、b的值,再计算a+b的值【详解】解:点P(2,b)和点Q(a,3),又关于x轴对称的点,横坐标相同,纵坐标互为相反数,a2,b3a+b1,故选:B【点睛】本题主要考查了关于x轴对称点的性质,点P(x,y)关于x轴的对称点P的坐标是(x,-y),正确记忆横纵坐标的关系是解题关键5、C【分析】根据两个点关于原点对称时,它们横、纵坐标均互为相反数,即可求出a的值【详解】解:点A(2,a)和点B(2,3)关于原点对称,a3,故选:C【点睛】此题考查的是关于原
10、点对称的两点坐标关系,掌握关于原点对称的两点坐标关系:横、纵坐标均互为相反数是解决此题的关键6、D【分析】根据关于x轴对称点的坐标特点:横坐标不变,纵坐标互为相反数可直接得到答案【详解】点M(2,3),点N与点M关于x轴对称,点N的坐标是(2,3),故选:D【点睛】本题考查了坐标轴中轴对称变化,解决本题的关键是掌握好对称点的坐标规律:关于x轴对称的点,横坐标相同,纵坐标互为相反数;关于y轴对称的点,纵坐标相同,横坐标互为相反数;关于原点对称的点,横坐标与纵坐标都互为相反数7、B【分析】根据关于x轴的对称点的坐标特点:横坐标不变,纵坐标互为相反数可得答案【详解】解:点P(2,-1)关于x轴的对称
11、点的坐标为(2,1),故选:B【点睛】此题主要考查了关于x轴的对称点的坐标,关键是掌握点的坐标的变化规律8、D【分析】根据轴对称图形,中心对称图形的定义去判断即可【详解】等边三角形是轴对称图形,不是中心对称图形,A不符合题意;平行四边形不是轴对称图形,是中心对称图形,B不符合题意;正五边形是轴对称图形,不是中心对称图形,C不符合题意;正六边形是轴对称图形,也是中心对称图形,D符合题意;故选D【点睛】本题考查了轴对称图形,中心对称图形的定义,轴对称图形即将一个图形沿着某条直线折叠,直线两旁的部分完全重合,中心对称图形即将一个图形绕某点旋转180后与原图形完全重合,熟练掌握两种图形的定义是解题的关
12、键9、A【分析】由两个点关于原点对称时,它们的坐标符号相反特点进行求解即可【详解】解:两个点关于原点对称时,它们的坐标符号相反,点关于原点对称的点的坐标是故选:A【点睛】题目考查了关于原点对称的点的坐标,解题关键是掌握好关于原点对称点的坐标规律10、B【分析】由矩形可知AB=CD=,再由勾股定理可知OC=2,则C点坐标为(2,0),D点坐标为(2,),旋转后D点坐标为(4,0),则C点坐标为(1,)【详解】四边形ABCD为矩形AB=CD=,DOC=60在中有则C点坐标为(2,0),D点坐标为(2,)又旋转后D点落在x轴的正半轴上可看作矩形ABCD中绕点O顺时针旋转了60得到如图所示,过C作y轴
13、平行线交x轴于点M其中DOC=DOC=60,OMC=90,OC=OC=2OM=1,MC=C坐标为(1,)故选:B【点睛】本题考查了旋转的性质,得出矩形ABCD绕点O顺时针旋转了60是解题的关键二、填空题1、8【分析】根据一次函数解析式可得:,过点B作轴,过点A作,过点Q作,由旋转的性质可得,依据全等三角形的判定定理及性质可得:MABNBQ,即可确定点Q的坐标,然后利用勾股定理得出OQ的长度,最后考虑在什么情况下取得最小值即可【详解】解:函数得:,过点B作轴,过点A作,过点Q作,连接OQ,如图所示:将线段BA绕点B逆时针旋转得到线段BQ,在MAB与NBQ中,MABNBQ,点Q的坐标为,当或时,取
14、得最小值为8,故答案为:8【点睛】题目主要考查一次函数与几何的综合问题,包括与坐标轴的交点,旋转,全等三角形的判定和性质,勾股定理等,理解题意,作出相应图形是解题关键2、6【分析】利用含30角的直角三角形的性质可得AB6,BAC60,根据旋转可证ABB是等边三角形,从而BBAB6【详解】解:在RtABC中,C90,ABC30,BAC60,AB2AC6,将RtABC绕点A逆时针旋转得到RtABC,BABCAC60,ABAB,ABB是等边三角形,BBAB6故答案为:6【点睛】本题主要考查了图形的旋转,等边三角形判定和性质,直角三角形的性质,熟练掌握相关知识点是解题的关键3、#【分析】先求出点A、B
15、的坐标,过点A作AFAB,交直线BC于点F,过点F作EFx轴,垂足为E,然后由全等三角形的判定和性质,等腰直角三角形的性质,求出点F的坐标,再利用待定系数法,即可求出答案【详解】解:一次函数y2x4的图像与x轴、y轴分别交于点A、B两点,令,则;令,则,点A为(2,0),点B为(0,4),;过点A作AFAB,交直线BC于点F,过点F作EFx轴,垂足为E,如图,ABF是等腰直角三角形,AF=AB,ABOFAE(AAS),AO=FE,BO=AE,点F的坐标为(,);设直线BC为,则,解得:,直线BC的函数表达式为;故答案为:;【点睛】本题考查了一次函数的性质,全等三角形的判定和性质,等腰三角形的判
16、定和性质,以及旋转的性质,解题的关键是熟练掌握所学的知识,正确的作出辅助线,从而进行解题4、【分析】根据位似变换的性质计算即可【详解】解:是以点为位似中心,在第三象限内与的相似比为的位似图形若点的坐标为,点的坐标为,即点的坐标为,故答案为:【点睛】本题考查位似变换的概念和性质,在平面直角坐标系中,如果位似变换是以原点为位似中心,相似比为k,则位似图形对应点的坐标的比等于k或-k5、 或【分析】(1)观察坐标系即可得点D坐标;(2)对应点连线段的垂直平分线的交点即为旋转中心【详解】解:(1)观察图象可知,点D的坐标为(6,6),故答案为:(6,6);(2)当点A与C对应,点B与D对应时,如图:此
17、时旋转中心P的坐标为(4,2);当点A与D对应,点B与C对应时,如图:此时旋转中心P的坐标为(1,5);故答案为:(4,2)或(1,5)【点睛】本题考查坐标与图形变化旋转,解题的关键是理解对应点连线段的垂直平分线的交点即为旋转中心三、解答题1、(1)见解析;(2)【分析】(1)根据旋转的性质:点B和点,点A和点到点N的距离相等,且即可;(2)线段AB扫过的面积为,由扇形面积公式计算即可【详解】(1)如图所示:(2)如图,线段AB扫过的面积=【点睛】本题考查旋转画图与扇形的面积公式,掌握不规则图形面积公式的求法是解题的关键2、CCA =70【分析】先根据平行线的性质,由得ACC=CAB=70,再
18、根据旋转的性质得AC=AC,BAB=CAC,于是根据等腰三角形的性质有ACC=ACC=70【详解】,ACC=CAB=70,ABC绕点A旋转到ABC的位置,AC=AC,BAB=CAC,在ACC中,AC=ACACC=CCA =70,【点睛】本题考查了旋转的性质:对应点到旋转中心的距离相等;对应点与旋转中心所连线段的夹角等于旋转角;旋转前、后的图形全等3、(1)见解析;(2)平行【分析】(1)将ABC向右平移3个单位长度,再向上平移2个单位长度,画出即可;(2)根据平移的性质:对应线段平行且相等,即可得出答案【详解】解:(1)如图所示,A1B1C1即为所求(2)根据平移的性质:对应线段平行且相等,故
19、答案为:平行【点睛】此题考查了作图平移、平移的性质,熟练掌握平移的有关性质是解题的关键4、(1)见解析;(2)见解析;(3)14平方单位【分析】(1)根据轴对称性质即可画出ABC关于x轴对称的;(2)根据位似图形的性质即可画出以点O为位似中心的位似图形,与的位似比为1:2;(3)利用相似三角形的性质计算即可【详解】解:(1)如图,即为所求作;(2)如图,即为所求作;(3)与的位似比为1:2,的面积为3.5平方单位,即的面积为3.5平方单位,的面积为:2=43.5=14平方单位【点睛】本题考查了作图-轴对称变换,位似变换等知识,解题的关键是熟练掌握基本知识,属于中考常考题型5、(1)补充图形见解
20、析;(2),仍然成立,证明见解析;(3)或【分析】(1)根据旋转作图的方法作图,再根据勾股定理求出BE的长即可;(2)根据SAS证明得AD=BE,1=2,再根据1+3+4=90得23+4=90,从而可得出结论;(3)分两种情况,运用勾股定理求解即可【详解】解:(1)如图所示,根据题意得,点D在BC上,是直角三角形,且BC=,CE= 由勾股定理得,;(2),仍然成立.证明:延长交于点,又,在中,.(3)当点D在AC上方时,如图1所示,同(2)可得AD=BE 同理可证 在RtCDE中,DE= 在RtACB中, 设AD=BE=x,在RtABE中, 解得, 当点D在AC下方时,如图2所示,同(2)可得AD=BE 同理可证 在RtCDE中,DE= 在RtACB中, 设AD=BE=x,在RtABE中, 解得, .所以,AD的值为或【点睛】本题考查了旋转的性质,全等三角形的判定与性质,勾股定理等知识,熟练解答本题的关键