《2022年强化训练京改版九年级数学下册第二十三章-图形的变换定向攻克试卷(精选含详解).docx》由会员分享,可在线阅读,更多相关《2022年强化训练京改版九年级数学下册第二十三章-图形的变换定向攻克试卷(精选含详解).docx(26页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、九年级数学下册第二十三章 图形的变换定向攻克 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、如图,把矩形纸片沿对角线折叠,若重叠部分为,那么下列说法错误的是( )A是等腰三角形B和全等C折叠后得到的图形是
2、轴对称图形D折叠后和相等2、如图,RtABC中,A90,B30,AC1,将RtABC延直线l由图1的位置按顺时针方向向右作无滑动滚动,当A第一次滚动到图2位置时,顶点A所经过的路径的长为()ABCD(2+)3、如图,在平面直角坐标系中,ABC的顶点A在第二象限,点B坐标为(2,0),点C坐标为(1,0),以点C为位似中心,在x轴的下方作ABC的位似图形ABC若点A的对应点A的坐标为(2,3),点B的对应点B的坐标为(1,0),则点A坐标为()A(3,2)B(2,)C(,)D(,2)4、已知点M(2,3),点N与点M关于x轴对称,则点N的坐标是()A(2,3)B(2,3)C(3,2)D(2,3)
3、5、点P( 5,3 )关于y轴的对称点是 ( )A(5, 3 )B(5,3)C(5,3 )D(5,3 )6、如图,在中,点D为边AB的中点,点P在边AC上,则周长的最小值等于( )ABCD7、如图,平行四边形OABC的顶点O(0,0),A(1,2),点C在x轴的正半轴上,延长BA交y轴于点D将ODA绕点O顺时针旋转得到ODA,当点D的对应点D落在OA上时,DA的延长线恰好经过点C,则点B的坐标为( )A(2,2)B(2,2)C(21,2)D(21,2)8、以下四大通讯运营商的企业图标中,是轴对称图形的是()ABCD9、如图,是由ABO平移得到的,点A的坐标为(-1,2),它的对应点的坐标为(3
4、,4),ABO内任意点P(a,b)平移后的对应点的坐标为( )A(a,b)B(-a,-b)C(a+2,b+4)D(a+4,b+2)10、如图,的顶点坐标为,若将绕点按顺时针方向旋转90,再向左平移2个单位长度,得到,则点的对应点的坐标是( )ABCD第卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、如图,在矩形中,将矩形绕点按顺时针方向旋转得到矩形,点落在矩形的边上,则的长是 _2、点关于x轴对称的点的坐标为_3、如图,在平面直角坐标系中,等腰直角三角形OAB,A90,点O为坐标原点,点B在x轴上,点A的坐标是(1,1)若将OAB绕点O顺时针方向依次旋转45后得到OA1B
5、1,OA2B2,OA3B3,可得A1(,0),A2(1,1),A3(0,),则A2021的坐标是_4、如图,边长为1的正六边形放置于平面直角坐标系中,边在轴正半轴上,顶点在轴正半轴上,将正六边形绕坐标原点顺时针旋转,每次旋转,那么经过第2022次旋转后,顶点的坐标为_5、如图,在RtABC中,C90,ABC30,AC3,将RtABC绕点A逆时针旋转得到RtABC,使点C落在AB边上,连接BB,则BB的长度为 _三、解答题(5小题,每小题10分,共计50分)1、已知点A(1,1),B(1,4),C(3,1)(1)请在如图所示的平面直角坐标系中(每个小正方形的边长都为1)画出ABC;(2)作ABC
6、关于x轴对称的DEF,其中点A,B,C的对应点分别为点D,E,F;(3)连接CE,CF,请直接写出CEF的面积2、如图,在等边ABC中,点P是BC边上一点,BAP(3060),作点B关于直线AP的对称点D,连接DC并延长交直线AP于点E,连接BE(1)依题意补全图形,并直接写出AEB的度数;(2)用等式表示线段AE,BE,CE之间的数量关系,并证明分析:涉及的知识要素:图形轴对称的性质;等边三角形的性质;全等三角形的判定与性质通过截长补短,利用60角构造等边三角形,进而构造出全等三角形,从而达到转移边的目的请根据上述分析过程,完成解答过程3、如图,在边长为1个单位长度的小正方形组成的网格中,A
7、BC的顶点A、B、C在小正方形的顶点上,将ABC向右平移3单位,再向上平移2个单位得到三角形A1B1C1(1)在网格中画出三角形A1B1C1(2)A1B1与AB的位置关系 4、如图,在平面直角坐标系中,直角的三个顶点分别是,(1)将以点为旋转中心顺时针旋转,画出旋转后对应的并写出各个顶点坐标;(2)分别连结,后,求四边形的面积5、如图,在ABC中,CAB70,在同一平面内,将ABC绕点A旋转到ABC的位置,使得CCAB,求CCA的度数-参考答案-一、单选题1、D【分析】根据题意结合图形可以证明EB=ED,进而证明ABECDE;此时可以判断选项A、B、D是成立的,问题即可解决【详解】解:由题意得
8、:BCDBFD,DC=DF,C=F=90;CBD=FBD,又四边形ABCD为矩形,A=F=90,DEBF,AB=DF,EDB=FBD,DC=AB,EDB=CBD,EB=ED,EBD为等腰三角形;在ABE与CDE中,ABECDE(HL);又EBD为等腰三角形,折叠后得到的图形是轴对称图形;综上所述,选项A、B、C成立,不能证明D是正确的,故说法错误的是D,故选:D【点睛】本题主要考查了翻折变换及其应用问题;解题的关键是灵活运用翻折变换的性质,找出图中隐含的等量关系;借助矩形的性质、全等三角形的判定等几何知识来分析、判断、推理或解答2、C【分析】根据题意,画出示意图,确定出点的运动路径,再根据弧长
9、公式即可求解【详解】解:根据题意可得,RtABC的运动示意图,如下:RtABC中,A90,B30,AC1,由图形可得,点的运动路线为,先以为中心,顺时针旋转,到达点,经过的路径长为,再以为中心,顺时针旋转,到达点,经过的路径长为,顶点A所经过的路径的长为,故选:C【点睛】此题考查了旋转的性质,圆弧弧长的求解,解题的关键是根据题意确定点的运动路线3、C【分析】如图,过点A作AEx轴于E,过点A作AFx轴于F利用相似三角形的性质求出AE,OE,可得结论【详解】解:如图,过点A作AEx轴于E,过点A作AFx轴于FB(-2,0),C(-1,0),B(1,0),A(2,-3)OB=2,OC=OB=1,O
10、F=2,AF=3,BC=1,CB=2,CF=3,ABCABC,ACE=ACF,AEC=AFC=90,AECAFC,故选:C【点睛】本题考查位似变换,坐标与图形性质,相似三角形的判定和性质等知识,解题的关键是学会添加常用辅助线,构造相似三角形解决问题4、D【分析】根据关于x轴对称点的坐标特点:横坐标不变,纵坐标互为相反数可直接得到答案【详解】点M(2,3),点N与点M关于x轴对称,点N的坐标是(2,3),故选:D【点睛】本题考查了坐标轴中轴对称变化,解决本题的关键是掌握好对称点的坐标规律:关于x轴对称的点,横坐标相同,纵坐标互为相反数;关于y轴对称的点,纵坐标相同,横坐标互为相反数;关于原点对称
11、的点,横坐标与纵坐标都互为相反数5、B【分析】根据两点关于y轴对称的特征是两点的横坐标互为相反数,纵坐标不变即可求出点的坐标【详解】解:所求点与点P(5,3)关于y轴对称,所求点的横坐标为5,纵坐标为3,点P(5,3)关于y轴的对称点是(5,3)故选B【点睛】本题考查两点关于y轴对称的知识;用到的知识点为:两点关于y轴对称,横坐标互为相反数,纵坐标相同6、C【分析】作点B关于AC的对称点H,连接HP、HD,由轴对称的性质可知,由题意易得,则有,然后由三角形周长公式可知,要使其最小,则需满足H、P、D三点共线即可,进而问题可求解【详解】解:作点B关于AC的对称点H,连接HP、HD,如图所示:,点
12、D为边AB的中点,(SAS),要使其最小,则需满足H、P、D三点共线,即的最小值为HD的长,的周长最小值为;故选C【点睛】本题主要考查轴对称的性质、含30度直角三角形的性质及全等三角形的性质与判定,熟练掌握轴对称的性质、含30度直角三角形的性质及全等三角形的性质与判定是解题的关键7、D【分析】连接,由题意可证明,利用相似三角形线段成比例即可求得OC的长,再由平行线的性质即可得点的坐标【详解】解:如图,连接,轴,绕点顺时针旋转得到,点B的坐标为:,故选:D【点睛】本题考查了旋转的性质,勾股定理,相似三角形的判定与性质,平行线的性质,利用相似三角形的性质得到线段的比例是解题关键8、D【分析】根据轴
13、对称图形的定义(在平面内沿一条直线折叠,直线两旁的部分能够完全重合的图形)进行判断即可得【详解】解:根据轴对称图形的定义判断可得:只有D选项符合题意,故选:D【点睛】题目主要考查轴对称图形的判断,理解轴对称图形的定义是解题关键9、D【分析】根据点A的坐标和点的坐标确定平移规律,即可求出点P(a,b)平移后的对应点的坐标【详解】解:ABO是由ABO平移得到的,点A的坐标为(-1,2),它的对应点A的坐标为(3,4),ABO平移的规律是:先向右移4个单位长度,再向上平移2个单位长度,ABO内任意点P(a,b)平移后的对应点P的坐标为(a+4,b+2)故选:D【点睛】此题考查了平面直角坐标系中点的平
14、移规律,解题的关键是熟练掌握平面直角坐标系中点的平移规律点向左平移,点的横坐标减小,纵坐标不变;向右平移,点的横坐标增大,纵坐标不变;点向上平移,点的横坐标不变,纵坐标增大;向下平移,点的横坐标不变,纵坐标减小10、A【分析】画出旋转平移后的图形即可解决问题【详解】解:旋转,平移后的图形如图所示,故选:A【点睛】本题考查坐标与图形变化旋转,解题的关键是理解题意,学会利用图象法解决问题二、填空题1、4【分析】根据矩形的性质和旋转性质得出BH=AB=5,C=90,再根据勾股定理求解即可【详解】解:由题意知:,C=90,在RtBCH中,BC=3,故答案为:4【点睛】本题考查矩形的性质、旋转性质、勾股
15、定理,熟练掌握旋转性质和勾股定理是解答的关键2、 (-2,-5)【分析】关于轴对称,横坐标不变,纵坐标互为相反数,进而可求解【详解】解:由点关于轴对称点的坐标为:,故答案为:【点睛】本题主要考查平面直角坐标系中点的坐标关于坐标轴对称问题,熟练掌握点的坐标关于坐标轴对称的方法是解题的关键3、【分析】根据题意得:A1(,0),A2(1,1),A3(0,), ,由此发现,旋转8次一个循环,再由 ,即可求解【详解】解:根据题意得:A1(,0),A2(1,1),A3(0,), ,由此发现,旋转8次一个循环, ,A2021的坐标是 故答案为:【点睛】本题主要考查了图形的旋转,明确题意,准确得到规律是解题的
16、关键4、【分析】连接AD、BD,由勾股定理可得BD,求出OFA=30,得到OA的值,进而求得OB的值,得到点D的坐标,由题意可得6次一个循环,即可求出经过第2022次旋转后,顶点的坐标【详解】解:如图,连接AD,BD,在正六边形ABCDEF中,在中,将正六边形ABCDEF绕坐标原点O顺时针旋转,每次旋转60,6次一个循环,经过第2022次旋转后,顶点D的坐标与第一象限中D点的坐标相同,故答案为:【点睛】此题考查了正六边形的性质,平面直角坐标系中图形规律问题,解题的关键是正确分析出点D坐标的规律5、6【分析】利用含30角的直角三角形的性质可得AB6,BAC60,根据旋转可证ABB是等边三角形,从
17、而BBAB6【详解】解:在RtABC中,C90,ABC30,BAC60,AB2AC6,将RtABC绕点A逆时针旋转得到RtABC,BABCAC60,ABAB,ABB是等边三角形,BBAB6故答案为:6【点睛】本题主要考查了图形的旋转,等边三角形判定和性质,直角三角形的性质,熟练掌握相关知识点是解题的关键三、解答题1、(1)作图见详解;(2)作图见详解;(3)的面积为2【分析】(1)直接在坐标系中描点,然后依次连线即可;(2)先确定A、B、C三点关于x轴对称的点的坐标,然后依次连接即可;(3)根据三角形在坐标系中的位置,确定三角形的底和高,直接求面积即可【详解】解:(1)如图所示,即为所求;(2
18、)A、B、C三点关于x轴对称的点的坐标分别为:,然后描点、连线,即为所求;(3)由图可得:SCEF=1222=2,的面积为2【点睛】题目主要考查在坐标系中作轴对称图形及点的坐标特点,熟练掌握轴对称图形的性质是解题关键2、(1)图见解析,AEB60;(2)AEBECE,证明见解析【分析】(1)依题意补全图形,如图所示:然后连接AD,先求出,然后根据轴对称的性质得到,AD=AB=AC,AEC=AEB,求出,即可求出,再由进行求解即可;(2)如图,在AE上截取EGBE,连接BG先证明BGE是等边三角形,得到BGBEEG,GBE60 再证明ABGCBE,即可证明ABGCBE得到AGCE,则AEEGAG
19、BECE【详解】解:(1)依题意补全图形,如图所示:连接AD,ABC是等边三角形,BAC=60,AB=AC,B、D关于AP对称,AD=AB=AC,AEC=AEB,AEB60 (2)AEBECE 证明:如图,在AE上截取EGBE,连接BGAEB60,BGE是等边三角形,BGBEEG,GBE60 ABC是等边三角形,ABBC,ABC60,ABGGBCGBCCBE60,ABGCBE 在ABG和CBE中,ABGCBE(SAS),AGCE,AEEGAGBECE【点睛】本题主要考查了全等三角形的性质,等边三角形的性质与判定,轴对称的性质,等腰三角形的性质与判定,三角形内角和定理,三角形外角的性质等等,熟知
20、相关知识是解题的关键3、(1)见解析;(2)平行【分析】(1)将ABC向右平移3个单位长度,再向上平移2个单位长度,画出即可;(2)根据平移的性质:对应线段平行且相等,即可得出答案【详解】解:(1)如图所示,A1B1C1即为所求(2)根据平移的性质:对应线段平行且相等,故答案为:平行【点睛】此题考查了作图平移、平移的性质,熟练掌握平移的有关性质是解题的关键4、(1)图见解析,;(2)9【分析】利用网格特点和旋转的性质画出、的对应点、,从而得到;利用两个梯形的面积和减去一个三角形的面积计算四边形的面积【详解】解:如图,为所作,各个顶点坐标为,;如图,四边形的面积【点睛】本题考查了作图旋转变换,根据旋转的性质画出转后对应的是解决问题的关键5、CCA =70【分析】先根据平行线的性质,由得ACC=CAB=70,再根据旋转的性质得AC=AC,BAB=CAC,于是根据等腰三角形的性质有ACC=ACC=70【详解】,ACC=CAB=70,ABC绕点A旋转到ABC的位置,AC=AC,BAB=CAC,在ACC中,AC=ACACC=CCA =70,【点睛】本题考查了旋转的性质:对应点到旋转中心的距离相等;对应点与旋转中心所连线段的夹角等于旋转角;旋转前、后的图形全等