2022年最新强化训练京改版九年级数学下册第二十三章-图形的变换专项攻克试题.docx

上传人:知****量 文档编号:28182221 上传时间:2022-07-26 格式:DOCX 页数:33 大小:1.66MB
返回 下载 相关 举报
2022年最新强化训练京改版九年级数学下册第二十三章-图形的变换专项攻克试题.docx_第1页
第1页 / 共33页
2022年最新强化训练京改版九年级数学下册第二十三章-图形的变换专项攻克试题.docx_第2页
第2页 / 共33页
点击查看更多>>
资源描述

《2022年最新强化训练京改版九年级数学下册第二十三章-图形的变换专项攻克试题.docx》由会员分享,可在线阅读,更多相关《2022年最新强化训练京改版九年级数学下册第二十三章-图形的变换专项攻克试题.docx(33页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。

1、九年级数学下册第二十三章 图形的变换专项攻克 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、下面4个图形中,不是轴对称图形的是( )ABCD2、在平面直角坐标系xOy中,若在第三象限,则关于x轴对称的图形

2、所在的位置是( )A第一象限B第二象限C第三象限D第四象限3、下列各组图形中,能够通过平移得到的一组是( )ABCD4、如图,在中,将绕点顺时针旋转得到,当点的对应点恰好落在边上时,的长为( )A3B4C5D65、如图,三角形中,将绕点B逆时针旋转得到,使点C的对应点恰好落在边上,则的度数是( )ABCD6、已知点M(2,3),点N与点M关于x轴对称,则点N的坐标是()A(2,3)B(2,3)C(3,2)D(2,3)7、下列图形中,是中心对称图形的是( )ABCD8、ABC中,ACB=90,A=,以C为中心将ABC旋转角到A1B1C(旋转过程中保持ABC的形状大小不变)B1点恰落在AB上,如图

3、,则旋转角与的数量关系为()ABCD9、2022年2月4日2月20日,北京冬奥会将隆重举行,如图是在北京冬奥会会徽征集过程中征集到的一幅图片旋转图片中的“雪花图案”,旋转后要与原图形重合,至少需要旋转( )A180B120C90D6010、已知半圆O的直径AB8,沿弦EF折叠,当折叠后的圆弧与直径AB相切时,折痕EF的长度m()Am4Bm4C4m4D4m4第卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、点A关于轴的对称点坐标是,则点关于轴的对称点坐标是_.2、如图,在平面直角坐标系中,等腰直角三角形OAB,A90,点O为坐标原点,点B在x轴上,点A的坐标是(1,1)若将

4、OAB绕点O顺时针方向依次旋转45后得到OA1B1,OA2B2,OA3B3,可得A1(,0),A2(1,1),A3(0,),则A2021的坐标是_3、如图,边长为1的正六边形放置于平面直角坐标系中,边在轴正半轴上,顶点在轴正半轴上,将正六边形绕坐标原点顺时针旋转,每次旋转,那么经过第2022次旋转后,顶点的坐标为_4、如图,已知ABC中,ABAC,将ABC沿DF折叠,点A落在BC边上的点E处,且DEBC于E,若A56,则AFD的度数为_5、如图,P是OA上一点,P与关于OB对称,作于点M,则_三、解答题(5小题,每小题10分,共计50分)1、在平面直角坐标系xOy中,O的半径为1对于线段AB,

5、给出如下定义:若线段AB沿着某条直线l对称可以得到O的弦AB,则称线段AB是O的以直线l为对称轴的“反射线段”,直线l称为“反射轴”(1)如图,线段CD,EF,GH中是O的以直线l为对称轴的“反射线段”有 ;(2)已知A点坐标为(0,2),B点坐标为(1,1),若线段AB是O的以直线l为对称轴的“反射线段”,求反射轴l与y轴的交点M的坐标若将“反射线段”AB沿直线yx的方向向上平移一段距离S,其反射轴l与y轴的交点的纵坐标yM的取值范围为yM,求S(3)已知点M,N是在以原点为圆心,半径为2的圆上的两个动点,且满足MN1,若MN是O的以直线l为对称轴的“反射线段”,当M点在圆上运动一周时,求反

6、射轴l未经过的区域的面积(4)已知点M,N是在以(2,0)为圆心,半径为的圆上的两个动点,且满足MN,若MN是O的以直线l为对称轴的“反射线段”,当M点在圆上运动一周时,请直接写出反射轴l与y轴交点的纵坐标的取值范围2、在如图所示的网格中,每个小正方形的边长为1,每个小正方形的顶点叫格点,ABC的三个顶点都在格点上(1)在图中画出将ABC绕点C按逆时针方向旋转90后得到的A1B1C1;(2)在(1)所画的图中,计算线段AC在旋转过程中扫过的图形面积(结果保留)3、如图,在平面直角坐标系中,直线l是第一、三象限的角平分线实验与探究:(1)观察图,易知A(0,2)关于直线l的对称点的坐标为(2,0

7、),请在图中分别标明B(5,3)、C(2,5)关于直线l的对称点、的位置,并写出他们的坐标: , ;归纳与发现:(2)结合图形观察以上三组点的坐标,你会发现:坐标平面内任一点P(a,b)关于第一、三象限的角平分线l的对称点的坐标为 (不必证明);运用与拓广:(3)已知两点D(1,3)、E(3,4),试在直线l上确定一点Q,使点Q到D、E两点的距离之和最小4、如图,在等腰直角中,点D,E在边BC上,且,将绕点A逆时针旋转90得到,连接EF(1)求证:(2)若,求CE5、如图,正方形ABCO的边OA、OC在坐标物上,点B坐标为将正方形ABCO绕点A顺时针旋转角度,得到正方形ADEF,ED交线段OC

8、于点G,ED的延长线交线段BC于点P连AP、AG(1)求证:;(2)求的度数;并判断线段OG、PG、BP之间的数量关系,说明理由;(3)当时,求直线PE的解析式(可能用到的数据:在中,30内角对应的直角边等于斜边的一半)(4)在(3)的条件下,直线PE上是否存在点M,使以M、A、G为顶点的三角形是等腰三角形?若存在,请直接写出M点坐标;若不存在,请说明理由-参考答案-一、单选题1、D【分析】根据轴对称图形的概念对各选项分析判断即可得解【详解】解:A、矩形是轴对称图形,故本选项不符合题意;B、菱形是轴对称图形,故本选项不符合题意;C、正方形是轴对称图形,故本选项不符合题意;D、平行四边形不是轴对

9、称图形,故本选项符合题意故选:D【点睛】本题考查了轴对称图形的概念,轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合2、B【分析】设内任一点A(a,b)在第三象限内,可得a0,b0,关于x轴对称后的点B(-a,b),则a0,b0,然后判定象限即可【详解】解:设内任一点A(a,b)在第三象限内,a0,b0,点A关于x轴对称后的点B(a,-b),b0,点B(a,-b)所在的象限是第二象限,即在第二象限故选:B【点睛】本题主要考查了平面直角坐标系中各个象限的点的坐标的符号特点,熟练掌握四个象限的符号特点分别是:第一象限(+,+);第二象限(-,+);第三象限(-,-);第四象限(+,-)是解题的

10、关键3、B【分析】根据平移的性质对各选项进行判断【详解】A、左图是通过翻折得到右图,不是平移,故不符合题意;B、上图可通过平移得到下图,故符合题意;C、不能通过平移得到,故不符合题意;D、不能通过平移得到,故不符合题意;故选B【点睛】本题主要考查平移的性质,熟练掌握平移的性质是解题的关键4、A【分析】先根据旋转的性质可得,再根据等边三角形的判定与性质可得,然后根据线段的和差即可得【详解】由旋转的性质得:,是等边三角形,故选:A【点睛】本题考查了旋转的性质、等边三角形的判定与性质等知识点,熟练掌握旋转的性质是解题关键5、A【分析】根据旋转的性质,可得 ,即可求解【详解】解:根据题意得:ABC=A

11、BC故选:A【点睛】本题主要考查了图形的旋转,熟练掌握图形旋转前后对应角相等,对应边相等是解题的关键6、D【分析】根据关于x轴对称点的坐标特点:横坐标不变,纵坐标互为相反数可直接得到答案【详解】点M(2,3),点N与点M关于x轴对称,点N的坐标是(2,3),故选:D【点睛】本题考查了坐标轴中轴对称变化,解决本题的关键是掌握好对称点的坐标规律:关于x轴对称的点,横坐标相同,纵坐标互为相反数;关于y轴对称的点,纵坐标相同,横坐标互为相反数;关于原点对称的点,横坐标与纵坐标都互为相反数7、C【分析】根据中心对称图形的概念:一个平面图形绕某一点旋转180,如果旋转后的图形能够和原图形重合,那么这个图形

12、叫做中心对称图形,这个点就是对称中心. 根据中心对称图形的概念对各选项进行一一分析判定即可求解【详解】A、不是中心对称图形,不符合题意;B、不是中心对称图形,不符合题意;C、是中心对称图形,符合题意;D、不是中心对称图形,不符合题意故选:C【点睛】本题考查了中心对称图形,掌握好中心对称图形,中心对称图形是要寻找对称中心,旋转180度后能够与原来的图形重合8、D【分析】由旋转性质以及等腰三角形性质计算即可【详解】由旋转性质可知A=A1=,BC=B1C,A1CA+ACB1=90,ACB1+B1CB=90,B1CB=A1CA =,又ABC+A=90,A1B1C+A1=90ABC=A1B1C=等腰三角

13、形CB1B中,CB1B=CBB1=,中CB1B+CBB1+B1CB=180故选:D【点睛】本题考查了旋转的性质,等腰三角形性质以及三角形内角和等,旋转的性质:(1)对应点到旋转中心的距离相等;(2)对应点与旋转中心所连线段的夹角等于旋转角;(3)旋转前后的图形全等9、D【分析】“雪花图案”可以看成正六边形,根据正六边形的中心角为60,即可解决问题【详解】解:“雪花图案”可以看成正六边形,正六边形的中心角为60,这个图案至少旋转60能与原雪花图案重合故选:D【点睛】本题考查旋转对称图形,生活中的旋转现象等知识,解题的关键是理解题意,掌握正六边形的性质10、D【分析】根据题意作出图形,根据垂径定理

14、可得,设,则,分情况讨论求得最大值与最小值,即可解决问题【详解】解:如图,根据题意,折叠后的弧为,为切点,设点为所在的圆心,的半径相等,即,连接,设交于点,根据折叠的性质可得,又则四边形是菱形,且设,则则当取得最大值时,取得最小值,即取得最小值,当取得最小值时,取得最大值,根据题意,当点于点重合时,四边形是正方形则此时当点与点重合时,此时最小,则即则故选D【点睛】本题考查了垂径定理,切线的性质,折叠的性质,勾股定理,分别求得的最大值与最小值是解题的关键二、填空题1、(2,1)【分析】根据关于坐标轴对称的点的特征,先求得的坐标,进而求得的坐标【详解】解:点A关于轴的对称点坐标是,点坐标是点关于轴

15、的对称点坐标是故答案为:【点睛】本题考查了关于坐标轴对称的点的坐标特征,掌握关于坐标轴对称的点的坐标特征是解题的关键关于x轴对称的两个点,横坐标相等,纵坐标互为相反数;关于y轴对称的两个点,纵坐标相等,横坐标互为相反数2、【分析】根据题意得:A1(,0),A2(1,1),A3(0,), ,由此发现,旋转8次一个循环,再由 ,即可求解【详解】解:根据题意得:A1(,0),A2(1,1),A3(0,), ,由此发现,旋转8次一个循环, ,A2021的坐标是 故答案为:【点睛】本题主要考查了图形的旋转,明确题意,准确得到规律是解题的关键3、【分析】连接AD、BD,由勾股定理可得BD,求出OFA=30

16、,得到OA的值,进而求得OB的值,得到点D的坐标,由题意可得6次一个循环,即可求出经过第2022次旋转后,顶点的坐标【详解】解:如图,连接AD,BD,在正六边形ABCDEF中,在中,将正六边形ABCDEF绕坐标原点O顺时针旋转,每次旋转60,6次一个循环,经过第2022次旋转后,顶点D的坐标与第一象限中D点的坐标相同,故答案为:【点睛】此题考查了正六边形的性质,平面直角坐标系中图形规律问题,解题的关键是正确分析出点D坐标的规律4、4848度【分析】先求出ABC和ACB的度数,再利用直角三角形的性质得出BDE的度数,根据由翻折的性质可得:,最后利用三角形的内角和定理得出结论【详解】解:ABAC,

17、A56,DEBC,由折叠的性质可得:,AFD=180-A-ADF=180-56-76=48,故答案为:48【点睛】本题考查了等腰三角形的性质,轴对称的性质,直角三角形的性质及三角形的内角和定理,解题的关键是熟练掌握这些性质5、2【分析】连接,根据对称的性质可得:,然后在中,利用角所对直角边是斜边的一半即可得【详解】解:连接,如图所示:P与关于OB对称,在中,故答案为:2【点睛】题目主要考查轴对称的性质,直角三角形中的性质等,理解题意,作出辅助线,结合这几个性质是解题关键三、解答题1、(1)2;(2);(3);(4)或【分析】(1)的半径为1,则的最长的弦长为2,根据两点的距离可得,进而即可求得

18、答案;(2)根据定义作出图形,根据轴对称的方法求得对称轴,反射线段经过对应圆心的中点,即可求得的坐标;由可得当时,yM,设当取得最大值时,过点作轴,根据题意,分别为沿直线yx的方向向上平移一段距离S 后的对应点,则,根据余弦求得进而代入数值列出方程,解方程即可求得的最大值,进而求得的范围;(3)根据圆的旋转对称性,找到所在的的圆心,如图,以为边在内作等边三角形,连接,取的中点,过作的垂线,则即为反射轴,反射轴l未经过的区域是以为圆心为半径的圆,反射轴l是该圆的切线,求得半径为,根据圆的面积公式进行计算即可;(4)根据(2)的方法找到所在的圆心,当M点在圆上运动一周时,如图,取的中点,的中点,即

19、的中点在以为圆心,半径为的圆上运动,进而即可求得反射轴l与y轴交点的纵坐标的取值范围【详解】(1)的半径为1,则的最长的弦长为2根据两点的距离可得故符合题意的“反射线段”有2条;故答案为:2(2)如图,过点作轴于点,连接 A点坐标为(0,2),B点坐标为(1,1),且,的半径为1,且线段AB是O的以直线l为对称轴的“反射线段”,由可得当时,yM如图,设当取得最大值时,过点作轴,根据题意,分别为沿直线yx的方向向上平移一段距离S 后的对应点,则, 过中点,作直线交轴于点,则即为反射轴yM,即即解得(舍)(3)的半径为1,则是等边三角形,根据圆的旋转对称性,找到所在的的圆心,如图,以为边在内作等边

20、三角形,连接,取的中点,过作的垂线,则即为反射轴, 反射轴l未经过的区域是以为圆心为半径的圆,反射轴l是该圆的切线当M点在圆上运动一周时,求反射轴l未经过的区域的面积为(4)如图,根据(2)的方法找到所在的圆心,设则,是等腰直角三角形,当M点在圆上运动一周时,如图,取的中点,的中点,是的中位线,即的中点在以为圆心,半径为的圆上运动若MN是O的以直线l为对称轴的“反射线段”,则为的切线设与轴交于点,同理可得反射轴l与y轴交点的纵坐标的取值范围为或【点睛】本题考查了中心对称与轴对称,圆的相关知识,切线的性质,三角形中位线定理,余弦的定义,掌握轴对称与中心对称并根据题意作出图形是解题的关键2、(1)

21、见详解;(2)【分析】(1)利用网格特点和旋转的性质画出A、B的对应点A1、B1即可(2)由勾股定理求出AC的长度,然后利用扇形的面积公式,即可求出答案【详解】解:(1)如图所示:(2)由勾股定理,则,线段AC在旋转过程中扫过的图形面积为:;【点睛】本题考查了作图旋转变换:根据旋转的性质可知,对应角都相等都等于旋转角,对应线段也相等,由此可以通过作相等的角,在角的边上截取相等的线段的方法,找到对应点,顺次连接得出旋转后的图形,也考查了扇形的面积公式,勾股定理3、(1)(3,5),(5,2);(2)(b,a);(3)Q(-3,-3)【分析】(1)根据点关于直线对称的定义,作出B、C两点关于直线l

22、的对称点B、C,写出坐标即可(2)通过观察即可得出对称结论(3)作点E关于直线l的对称点E(4,3),连接DE交直线l于Q,此时QE+QD的值最小【详解】解:(1)B(5,3)、C(2,5)关于直线l的对称点B、C的位置如图所示B(3,5),C(5,2)故答案为B(3,5),C(5,2)(2)由(1)可知点P(a,b)关于第一、三象限的角平分线l的对称点P的坐标为P(b,a)(3)作点E关于直线l的对称点E(4,3),连接DE交直线l于Q,两点之间线段最短此时QE+QD的值最小,由图象可知Q点坐标为(-3,-3)【点睛】本题考查了坐标系中的轴对称变化,点关于第一、三象限角平分线对称的点的坐标为

23、;关于第二、四象限角平分线对称的点的坐标为.4、(1)见解析;(2)3【分析】(1)根据旋转的性质,可得BAD=CAF,AD=AF,再由,可得EAF=45,从而得到EAF=DAE,进而得到DAEFAE,即可求证;(2)根据旋转的性质,可得B=ACF,CF=BD=4,再由等腰直角三角形的性质可得B=ACB=45,从而得到ACF=45, ,进而得到ECF=90,再由,可得EF=8-CE,然后在 中,由勾股定理,即可求解【详解】解:(1)将绕点A逆时针旋转90得到,BAD=CAF,AD=AF,BAD+CAE=BAC-DAE=45,CAF+CAE=BAC-DAE=45,即EAF=45,EAF=DAE,

24、AE=AE,DAEFAE,DE=EF;(2)将绕点A逆时针旋转90得到,B=ACF,CF=BD=4,在等腰直角中,B=ACB=45,ACF=45, ,ECF=ACB+ACF=90,BD=4,DE+CE=8,DE=EF,EF+CE=8,EF=8-CE,在 中, , ,解得: 【点睛】本题主要考查了全等三角形的判定和性质,图形的旋转,勾股定理,等腰直角三角形的性质,熟练掌握相关知识点是解题的关键5、(1)证明见解析;(2),;(3);(4)或,【分析】(1)由,根据斜边和一条直角边对应相等的两个直角三角形全等,判断出即可(2)首先根据三角形全等的判定方法,判断出,再结合,可得,;然后根据,求出的度

25、数;最后判断出线段、之间的数量关系即可(3)首先根据,判断出;然后根据,判断出当时,而,求出;最后确定出、两点坐标,即可判断出直线的解析式(4)根据题意,分两种情况:当点在轴的负半轴上时;当点在的延长线上时;根据以、为顶点的三角形是等腰三角形,求出点坐标是多少即可【详解】(1)证明:在RtAOG和RtADG中,(HL)(2)在RtADP和RtABP中,(HL),则;,;又,;,(3)解:,又,又,又,;在中,解得点坐标为,在中,点坐标为:,设直线的解析式为:,则,解得,直线的解析式为(4)如图1,当点在轴的负半轴上时,点坐标为,点坐标为如图2,当点在的延长线上时,由(3),可得,与的交点,满足,点的横坐标是0,点横坐标为,的横坐标是,纵坐标是3,点坐标为,综上,可得点坐标为或,【点睛】本题考查了全等三角形的判定与性质、余角、解含30度角的直角三角形、等腰三角形的判定以及等边三角形判定与性质,解题的关键是:(1)通过解含30度角的直角三角形求出OG、PC的长度;(2)利用等腰三角形的性质确定点M的位置

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 应用文书 > 策划方案

本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

工信部备案号:黑ICP备15003705号© 2020-2023 www.taowenge.com 淘文阁