2022年强化训练京改版九年级数学下册第二十三章-图形的变换同步训练试题(含详解).docx

上传人:知****量 文档编号:28183394 上传时间:2022-07-26 格式:DOCX 页数:27 大小:711.91KB
返回 下载 相关 举报
2022年强化训练京改版九年级数学下册第二十三章-图形的变换同步训练试题(含详解).docx_第1页
第1页 / 共27页
2022年强化训练京改版九年级数学下册第二十三章-图形的变换同步训练试题(含详解).docx_第2页
第2页 / 共27页
点击查看更多>>
资源描述

《2022年强化训练京改版九年级数学下册第二十三章-图形的变换同步训练试题(含详解).docx》由会员分享,可在线阅读,更多相关《2022年强化训练京改版九年级数学下册第二十三章-图形的变换同步训练试题(含详解).docx(27页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。

1、九年级数学下册第二十三章 图形的变换同步训练 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、如果点P(2,b)和点Q(a,3)关于x轴对称,则a+b=()A1B1C5D52、在平面直角坐标系中,点,关于轴

2、对称点的坐标是( )ABCD3、如图,将绕点按顺时针旋转一定角度得到,点的对应点点恰好落在边上,若,则的长为( )A3B2CD14、下列图形中,既是轴对称图形又是中心对称图形的是()ABCD5、下面每个选项中,左边和右边的符号作为图形成轴对称的是( )A%BCD6、如图,平行四边形OABC的顶点O(0,0),A(1,2),点C在x轴的正半轴上,延长BA交y轴于点D将ODA绕点O顺时针旋转得到ODA,当点D的对应点D落在OA上时,DA的延长线恰好经过点C,则点B的坐标为( )A(2,2)B(2,2)C(21,2)D(21,2)7、如图,等边中,D为AC中点,点P、Q分别为AB、AD上的点,在BD

3、上有一动点E,则的最小值为( )A7B8C10D128、点P(3,2)关于原点O的对称点的坐标是()A(3,2)B(3,2)C(3,2)D(2,3)9、下列图形既是轴对称图形又是中心对称图形的是()ABCD10、点向上平移2个单位后与点关于y轴对称,则( )A1BCD第卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、在平面直角坐标系中,对进行循环往复的轴对称变换,若原来点的坐标是,则经过第2021次变换后所得的点的坐标是_2、在平面直角坐标系中,点P(2,3)向右平移3个单位再向下平移2个单位后的坐标是_3、如图,已知ABC和ABC是以点C为位似中心的位似图形,且ABC和

4、ABC的周长之比为1:2,点C的坐标为(1,0),若点B的对应点B的横坐标为5,则点B的横坐标为 _4、如图,在平面直角坐标系中,有一个,ABO90,AOB30,直角边OB在y轴正半轴上,点A在第一象限,且OA1,将绕原点逆时针旋转30,同时把各边长扩大为原来的两倍(即OA12OA)得到,同理,将绕原点O逆时针旋转30,同时把各边长扩大为原来的两倍,得到,依此规律,得到,则的长度为_5、如图,AOB内一点P,P1、P2分别是点P关于OA、OB的对称点,P1P2交OA于M,交OB于N,若P1P25cm,则PMN的周长是_三、解答题(5小题,每小题10分,共计50分)1、在如图所示的平面直角系中,

5、已知,(方格中每个小正方形的边长均为1个单位)(1)画出;(2)以原点为位似中心,相似比为2,在第一象限内将放大,画出放大后的图形,并写出点的坐标 2、在平面直角坐标系xOy中,对于任意图形G及直线l1,l2,给出如下定义:将图形G先沿直线l1翻折得到图形G1,再将图形G1沿直线l2翻折得到图形G2,则称图形G2是图形G的伴随图形例如:点P(2,1)的伴随图形是点P(-2,-1).(1)点Q(-3,-2)的伴随图形点Q的坐标为 ;(2)已知A(t,1),B(t-3,1),C(t,3),直线m经过点(1,1).当t=-1,且直线m与y轴平行时,点A的伴随图形点A的坐标为 ;当直线m经过原点时,若

6、ABC的伴随图形上只存在两个与x轴的距离为1的点,直接写出t的取值范围3、如图,在平面直角坐标系中,直角的三个顶点分别是,(1)将以点为旋转中心顺时针旋转,画出旋转后对应的并写出各个顶点坐标;(2)分别连结,后,求四边形的面积4、如图,在中,CD平分P为边BC上一动点,将沿着直线DP翻折到,点E恰好落在的外接圆上(1)求证:D是AB的中点(2)当,时,求DC的长(3)设线段DB与交于点Q,连结QC,当QC垂直于的一边时,求满足条件的所有的度数5、如图,在等腰中,点D在线段BC的延长线上,连接AD ,将线段AD绕点A逆时针旋转90得到线段AE,连接CE,射线BA与CE相交于点F(1)依题意补全图

7、形;(2)用等式表示线段BD 与CE的数量关系,并证明;(3)若F为CE中点,则CE的长为_-参考答案-一、单选题1、B【分析】根据关于x轴对称的点,横坐标相同,纵坐标互为相反数,求出a、b的值,再计算a+b的值【详解】解:点P(2,b)和点Q(a,3),又关于x轴对称的点,横坐标相同,纵坐标互为相反数,a2,b3a+b1,故选:B【点睛】本题主要考查了关于x轴对称点的性质,点P(x,y)关于x轴的对称点P的坐标是(x,-y),正确记忆横纵坐标的关系是解题关键2、A【分析】平面直角坐标系中任意一点P(x,y),关于x轴的对称点的坐标是(x,-y),即关于横轴的对称点,横坐标不变,纵坐标变成相反

8、数,这样就可以求出对称点的坐标【详解】解:点A(3,-4)关于x轴的对称点的坐标是(3,4),故选:A【点睛】本题主要考查了平面直角坐标系关于坐标轴成轴对称的两点的坐标之间的关系,是需要识记的内容3、B【分析】由直角三角形的性质可得AB2,BC2AB4,由旋转的性质可得ADAB,可证ADB是等边三角形,可得BDAB2,即可求解【详解】解:,BAC90C=90-BC2ABBC2=AC2+AB2AB2,BC2AB4,RtABC绕点A按顺时针旋转一定角度得到RtADE,ADAB,且B60ADB是等边三角形BDAB2,CDBCBD422故选:B【点睛】本题考查了旋转的性质,等边三角形的判定和性质,直角

9、三角形的性质,熟练运用旋转的性质是本题的关键4、B【分析】根据轴对称图形(一个图形沿着某一条直线折叠,如果它能够与另一个图形完全重合,称这两个图形为轴对称)和中心对称图形(指把一个图形绕着某一点旋转,如果它能够与另一个图形重合,那么就说这两个图形关于这个点对称或中心对称)的概念对各选项分析判断即可得解【详解】解:A是轴对称图形,不是中心对称图形,故本选项不符合题意;B既是轴对称图形,又是中心对称图形,故本选项符合题意;C不是轴对称图形,是中心对称图形,故本选项不符合题意;D是轴对称图形,不是中心对称图形,故本选项不符合题意故选:B【点睛】题目主要考查轴对称与中心对称图形的识别,理解这两个定义是

10、解题关键5、C【分析】轴对称图形是指在平面内沿一条直线折叠,直线两旁的部分能够完全重合的图形,据此定义可直接得出【详解】解:根据轴对称图形的定义可得出:C选项经过对折后可完全重合,故选:C【点睛】题目主要考查轴对称图形的定义,深刻理解此定义是解题关键6、D【分析】连接,由题意可证明,利用相似三角形线段成比例即可求得OC的长,再由平行线的性质即可得点的坐标【详解】解:如图,连接,轴,绕点顺时针旋转得到,点B的坐标为:,故选:D【点睛】本题考查了旋转的性质,勾股定理,相似三角形的判定与性质,平行线的性质,利用相似三角形的性质得到线段的比例是解题关键7、C【分析】作点关于的对称点,连接交于,连接,此

11、时的值最小,最小值,据此求解即可【详解】解:如图,是等边三角形,D为AC中点,作点关于的对称点,连接交于,连接,此时的值最小最小值,是等边三角形,的最小值为故选:C【点睛】本题考查等边三角形的性质和判定,轴对称最短问题等知识,解题的关键是学会利用轴对称解决最短问题,属于中考常考题型8、B【分析】根据“平面直角坐标系中任意一点P(x,y),关于原点的对称点是(x,y),即关于原点的对称点,横纵坐标都变成相反数”解答【详解】解:点P(3,2)关于原点O的对称点P的坐标是(3,2)故选:B【点睛】本题主要考查了关于原点对称的点的坐标的特点,正确掌握横纵坐标的关系是解题关键9、B【分析】根据轴对称图形

12、与中心对称图形的概念求解【详解】解:A不是中心对称图形,也不是轴对称图形,故此选项不合题意;B是轴对称图形,也是中心对称图形,故此选项符合题意;C是轴对称图形,不是中心对称图形,故此选项不合题意;D不是轴对称图形,是中心对称图形,故此选项不合题意故选:B【点睛】此题主要考查了中心对称图形与轴对称图形的概念:轴对称图形:如果一个图形沿着一条直线对折后两部分完全重合,这样的图形叫做轴对称图形;中心对称图形:在同一平面内,如果把一个图形绕某一点旋转180,旋转后的图形能和原图形完全重合,那么这个图形就叫做中心对称图形10、D【分析】利用平移及关于y轴对称点的性质即可求解【详解】解:把向上平移2个单位

13、后得到点 ,点与点关于y轴对称, , , ,故选:D【点睛】本题考查坐标与图形变化平移、轴对称的性质及负整数指数幂,解题关键是掌握平移、轴对称的性质及负整数指数幂二、填空题1、【分析】由题意根据点A第四次关于y轴对称后在第一象限,即点A回到初始位置,所以,每四次对称为一个循环组依次循环进行分析即可得出答案【详解】解:根据题意可知:点A第四次关于y轴对称后在第一象限,即点A回到初始位置,所以,每四次对称为一个循环组依次循环,20214=5051,经过第2021次变换后所得的A点与第一次关于x轴对称变换的位置相同,在第四象限,坐标为.故答案为:【点睛】本题考查轴对称的性质以及点的坐标变换规律,读懂

14、题目信息,观察出每四次对称为一个循环组依次循环是解题的关键2、 (5,1)【分析】利用坐标点平移的性质:左右平移,对横坐标进行加减,上下平移对纵坐标进行加减,解决该题即可【详解】解:点P(2,3)向右平移3个单位再向下平移2个单位,即横坐标加3,纵坐标减2,所以平移后的点坐标为(5,1)故答案为:(5,1)【点睛】本题主要是考查了点坐标的平移,熟练掌握点坐标的上下左右平移与横纵坐标的关系,是求解该类问题的关键3、-4【分析】过点B作BDx轴于点D,过点B作BHx于点H,则BDBH,可得BCDBCH,从而,再由相似三角形的周长之比等于相似比,可得,继而得到,即可求解【详解】解:如图,过点B作BD

15、x轴于点D,过点B作BHx于点H,则BDBH,DBC=HBC,BDC=BHC,BCDBCH,ABC和ABC的周长之比为12,点C的坐标为(1,0),点B的对应点B的横坐标为5,OC1,OH5,CH6,3,ODOC+CD=1+3=4,点B的横坐标为4故答案为:【点睛】本题主要考查了位似图形,相似三角形的判定和性质,熟练掌握位似图形,相似三角形的判定和性质定理是解题的关键4、2【分析】根据余弦的定义求出OB,根据题意求出OBn,根据题意找出规律,根据规律解答即可【详解】解:在RtAOB中,AOB30,OA1,OBOAcosAOB,由题意得,OB12OB2,OB22OB122,OBn2n2n1,的长

16、为:22020=22020,故答案为:22020【点睛】本题考查的是位似变换的性质、图形的变化规律、锐角三角函数的定义,正确得到图形的变化规律是解题的关键5、5cm【分析】根据轴对称的性质得到PMMP1,PNNP2,然后等量代换可得PMN的周长为P1P2【详解】解:AOB内一点P,P1、P2分别是点P关于OA、OB的对称点,P1P2交OA于M,交OB于N,OA、OB分别是P与P1和P与P2的对称轴PMMP1,PNNP2;P1M+MN+NP2PM+MN+PNP1P25cm,PMN的周长为5cm故填5cm【点睛】本题考查轴对称的性质,对应点的连线与对称轴的位置关系是互相垂直,对应点所连的线段被对称

17、轴垂直平分,对称轴上的任何一点到两个对应点之间的距离相等三、解答题1、(1)见解析;(2)(6,6)【分析】(1)在坐标系中先描点,然后依次连接即可得;(2)根据题意中位似中心及相似比先确定点的坐标,然后依次连接即可得【详解】解:(1)在坐标系中先描点,然后依次连接,如图所示:即为所求;(2),根据位似中心及相似比可得:,然后依次连接即可得,即为所求;故答案为:【点睛】题目主要考查位似图形作法及确定点的坐标,熟练掌握位似图形的作法是解题关键2、(1)(3,2)(2)(3,-1);-1t1或2t4【分析】(1)点先关于轴对称的点坐标为,再关于轴对称的点坐标为,故可得点的伴随图形点坐标;(2)时,

18、点坐标为,直线为,此时点先关于轴对称的点坐标为,再关于轴对称的点坐标为,进而得到点的伴随图形点坐标;由题意知直线为直线,、三点的轴,的伴随图形点坐标依次表示为:,由题意可得,或解出的取值范围即可(1)解:由题意知沿轴翻折得点坐标为;沿轴翻折得点坐标为故答案为:(2)解:,点坐标为,直线为,沿轴翻折得点坐标为沿直线翻折得点坐标为即为故答案为:解:直线经过原点直线为、的伴随图形点坐标先沿轴翻折,点坐标依次为,;然后沿直线翻折,点坐标依次表示为:,由题意可知:或解得:或【点睛】本题考查了直角坐标系中的点对称,几何图形翻折解题的关键在于正确的将翻折后的点坐标表示出来3、(1)图见解析,;(2)9【分析

19、】利用网格特点和旋转的性质画出、的对应点、,从而得到;利用两个梯形的面积和减去一个三角形的面积计算四边形的面积【详解】解:如图,为所作,各个顶点坐标为,;如图,四边形的面积【点睛】本题考查了作图旋转变换,根据旋转的性质画出转后对应的是解决问题的关键4、(1)证明见解析;(2);(3)当QC垂直于DPE的一边时,QCB=15或22.5【分析】(1)由翻折的性质可得B=DEP,再由DCP=DEP,即可得到B=DCP,CD=BD,再由角平分线的定义得到,则BDC=90,即可利用三线合一定理得到BD=AD,即D是AB的中点;(2)由DPE是DPB翻折得到,得到,如图所示,过点P作PFAB于F,先利用勾

20、股定理求出,得到,即可求出,则;(3)分当CQDP时,当DECQ时,当PECQ时三种情况进行讨论求解即可得到答案【详解】解:(1)DPE是DPB翻折得到,B=DEP,又DCP=DEP,B=DCP,CD=BD,ACB=90,CD平分ACB,= A,BDC=90,CA=CB,BD=AD(三线合一定理),D是AB的中点;(2)DPE是DPB翻折得到,如图所示,过点P作PFAB于F,PFB=PFD=90,DP=2PF,B=45,BPF=90-B=45,BPF=B,BF=PF,; (3)如图所示,当CQDP时,CDQ=90,CQ为圆O的直径,由垂径定理可知,即;如图所示,当DECQ时,设DE与CQ交于点

21、F,连接CE,DPE是DPB翻折得到,BD=DE,又BD=CD,CD=ED,DEC=DCE,DEC=DCP+ECP=ECP+45,QCP=ECP,DEC=QCP+45,又CQDE,CFE=90,FCE+FEC=90,QCP+45+QCP+ECP=90,即3QCP+45=90,QCP=15,即QCB=15,当PECQ时,E点要在CD的下方,此时圆O与直线BD的交点在BD的延长线上,不存在PECQ这种情况,综上所述,当QC垂直于DPE的一边时,QCB=15或22.5【点睛】本题主要考查了折叠的性质,圆周角定理,垂径定理,直径所对的圆周角是直角,含30度角的直角三角形的性质,等腰直角三角形的性质与判

22、定,勾股定理等等,解题的关键在于能够熟练掌握圆的相关知识5、(1)见解析;(2),见解析;(3)4【分析】(1)根据题意补全图形即可;(2)根据题意易得,即可推出即可利用“SAS”证明,得出结论(3)由结合题意可推出,即证明ACF是等腰直角三角形,从而得出,再由勾股定理可求出CF的长,最后根据点F为CE中点,即可求出CE的长【详解】解:(1)依题意补全图形如下: (2)用等式表示线段BD与CE的数量关系是:,证明: 根据题意可知ABC是等腰直角三角形,AD绕点A逆时针旋转90得到AE, ,即,在和中,(3),ABC是等腰直角三角形,ACF是等腰直角三角形,在中,点F为CE中点,【点睛】本题考查等腰直角三角形的判定和性质,旋转的性质,三角形全等的判定和性质以及勾股定理利用数形结合的思想是解答本题的关键

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 应用文书 > 策划方案

本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

工信部备案号:黑ICP备15003705号© 2020-2023 www.taowenge.com 淘文阁