《2022年最新强化训练京改版九年级数学下册第二十三章-图形的变换专项攻克试题(精选).docx》由会员分享,可在线阅读,更多相关《2022年最新强化训练京改版九年级数学下册第二十三章-图形的变换专项攻克试题(精选).docx(26页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、九年级数学下册第二十三章 图形的变换专项攻克 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、已知半圆O的直径AB8,沿弦EF折叠,当折叠后的圆弧与直径AB相切时,折痕EF的长度m()Am4Bm4C4m4D
2、4m42、下列标志图案属于轴对称图形的是()ABCD3、如图,将OAB绕点O逆时针旋转70到OCD的位置,若AOB40,则AOD的度数等于( )A29B30C31D324、如图,以点O为位似中心,将DEF放大后得到ABC,已知OD=1,OA=3若DEF的面积为S,则ABC的面积为( )A2SB3SC4SD9S5、在平面直角坐标系中,点的坐标是,点与点关于轴对称,则点的坐标是( )ABCD6、下列交通标志中既是中心对称图形,又是轴对称图形的是( )ABCD7、下列图形既是轴对称图形又是中心对称图形的是()ABCD8、以下是四个我国杰出企业代表的标志,其中是轴对称图形的是( )ABCD9、如图,是
3、由ABO平移得到的,点A的坐标为(-1,2),它的对应点的坐标为(3,4),ABO内任意点P(a,b)平移后的对应点的坐标为( )A(a,b)B(-a,-b)C(a+2,b+4)D(a+4,b+2)10、下列四个标志中,是轴对称图形的是( )ABCD第卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、在平面直角坐标系中,以原点为位似中心,作的位似图形,使它与相似比为2,若点的坐标为,则位似图形上与点对应的点的坐标为_2、在平面直角坐标系中,点P(2,3)向右平移3个单位再向下平移2个单位后的坐标是_3、如图,P是正方形ABCD内一点,将绕点B顺时针方向旋转,能与重合,若,则
4、_4、在平面直角坐标系中,点A(m,5)和点B(2,n)关于x轴对称,则m+n=_5、如图,在平面直角坐标系中,A(0,1),B(1,0),对RtABO沿轴依次作旋转变换,分别得到1,2,3,4,则20的直角顶点横坐标是_ 三、解答题(5小题,每小题10分,共计50分)1、在如图所示的网格中,每个小正方形的边长为1,每个小正方形的顶点叫格点,ABC的三个顶点都在格点上(1)在图中画出将ABC绕点C按逆时针方向旋转90后得到的A1B1C1;(2)在(1)所画的图中,计算线段AC在旋转过程中扫过的图形面积(结果保留)2、如图,在由边长为1个单位长度的小正方形组成的网格中,给出了以格点(网格线的交点
5、)为端点的线段AB,线段MN在网格线上(点M,N是格点)(1)画出线段AB绕点N顺时针旋转90得到的线段(点,分别为A,B的对应点);(2)在问题(1)的旋转过程中,求线段AB扫过的面积3、如图,在等腰中,点D在线段BC的延长线上,连接AD ,将线段AD绕点A逆时针旋转90得到线段AE,连接CE,射线BA与CE相交于点F(1)依题意补全图形;(2)用等式表示线段BD 与CE的数量关系,并证明;(3)若F为CE中点,则CE的长为_4、已知四边形ABCD和四边形CEFG都是正方形 ,且ABCE(1)如图1,连接BG、DE求证:BG=DE(2)如图2,如果将正方形CEFG绕着点C旋转到某一位置时恰好
6、使得,BG=BD求的度数 5、问题背景如图(1),ABC为等腰直角三角形,BAC90,直线l绕着点A顺时针旋转,过B,C两点分别向直线l作垂线BD,CE,垂足为D,E,此时ABD可以由CAE通过旋转变换得到,请写出旋转中心、旋转方向及旋转角的大小(取最小旋转角度)尝试应用如图(2),ABC为等边三角形,直线l绕着点A顺时针旋转,D、E为直线l上两点,BDAAEC60ABD可以由CAE通过旋转变换得到吗?若可以,请指出旋转中心O的位置并说明理由;拓展创新如图(3)在问题背景的条件下,若AB2,连接DC,直接写出CD的长的取值范围-参考答案-一、单选题1、D【分析】根据题意作出图形,根据垂径定理可
7、得,设,则,分情况讨论求得最大值与最小值,即可解决问题【详解】解:如图,根据题意,折叠后的弧为,为切点,设点为所在的圆心,的半径相等,即,连接,设交于点,根据折叠的性质可得,又则四边形是菱形,且设,则则当取得最大值时,取得最小值,即取得最小值,当取得最小值时,取得最大值,根据题意,当点于点重合时,四边形是正方形则此时当点与点重合时,此时最小,则即则故选D【点睛】本题考查了垂径定理,切线的性质,折叠的性质,勾股定理,分别求得的最大值与最小值是解题的关键2、B【分析】根据轴对称图形的概念求解如果一个图形沿着一条直线对折后两部分完全重合,这样的图形叫做轴对称图形,这条直线叫做对称轴【详解】选项B能找
8、到这样的一条直线,使图形沿着一条直线对折后两部分完全重合,选项A、C、D均不能找到这样的一条直线,所以不是轴对称图形,故选:B【点睛】本题考查了轴对称图形的概念:轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合3、B【分析】由旋转的性质可得DOB=70,即可求解【详解】解:将OAB绕点O逆时针旋转70到OCD,DOB=70,AOB=40,AOD=BOD-AOB=30,故选:B【点睛】本题考查了旋转的性质,熟练掌握旋转的性质是本题的关键4、D【分析】首先由OD=1,OA=3,求出DEF和ABC的位似比为1:3,进而得到相似比为1:3,即可根据相似三角形面积比等于相似比的平方求出ABC
9、的面积【详解】解:OD=1,OA=3,DEF和ABC的位似比为1:3,DEF和ABC的相似比为1:3,即,ABC的面积为故选:D【点睛】此题考查了位似三角形的性质,相似三角形的性质,解题的关键是熟练掌握位似三角形的性质位似三角形的位似比等于相似比相似三角形性质:相似三角形对应边成比例,对应角相等相似三角形的相似比等于周长比,相似三角形的相似比等于对应高的比,对应角平分线的比以及对应中线的比,相似三角形的面积比等于相似比的平方5、C【分析】根据关于轴对称的点坐标的特征:纵坐标不变,横坐标互为相反数,即可求解【详解】解:点的坐标是,点与点关于轴对称,的坐标为,故选:C【点睛】本题主要是考查了关于轴
10、对称的点坐标的特征,熟练掌握关于坐标轴对称的点的特征,是解决该类问题的关键6、C【分析】结合选项根据轴对称图形(把一个图形沿着某一条直线折叠,如果它能够与另一个图形完全重合,称这两个图形为轴对称)与中心对称图形(指把一个图形绕着某一点旋转,如果它能够与另一个图形重合,那么就说这两个图形关于这个点对称或中心对称)的概念求解即可【详解】解:A、是轴对称图形,不是中心对称图形;B、是轴对称图形,不是中心对称图形;C、是轴对称图形,也是中心对称图形;D、不是轴对称图形,也不是中心对称图形故选:C【点睛】题目主要考查轴对称和中心对称图形的识别,深刻理解轴对称与中心对称图形的概念是解题关键7、B【分析】根
11、据轴对称图形与中心对称图形的概念求解【详解】解:A不是中心对称图形,也不是轴对称图形,故此选项不合题意;B是轴对称图形,也是中心对称图形,故此选项符合题意;C是轴对称图形,不是中心对称图形,故此选项不合题意;D不是轴对称图形,是中心对称图形,故此选项不合题意故选:B【点睛】此题主要考查了中心对称图形与轴对称图形的概念:轴对称图形:如果一个图形沿着一条直线对折后两部分完全重合,这样的图形叫做轴对称图形;中心对称图形:在同一平面内,如果把一个图形绕某一点旋转180,旋转后的图形能和原图形完全重合,那么这个图形就叫做中心对称图形8、B【详解】解:A、不是轴对称图形,故本选项不符合题意;B、是轴对称图
12、形,故本选项符合题意;C、不是轴对称图形,故本选项不符合题意;D、不是轴对称图形,故本选项不符合题意;故选:B【点睛】本题主要考查了轴对称图形的定义,熟练掌握若一个图形沿着一条直线折叠后两部分能完全重合,这样的图形就叫做轴对称图形,这条直线叫做对称轴是解题的关键9、D【分析】根据点A的坐标和点的坐标确定平移规律,即可求出点P(a,b)平移后的对应点的坐标【详解】解:ABO是由ABO平移得到的,点A的坐标为(-1,2),它的对应点A的坐标为(3,4),ABO平移的规律是:先向右移4个单位长度,再向上平移2个单位长度,ABO内任意点P(a,b)平移后的对应点P的坐标为(a+4,b+2)故选:D【点
13、睛】此题考查了平面直角坐标系中点的平移规律,解题的关键是熟练掌握平面直角坐标系中点的平移规律点向左平移,点的横坐标减小,纵坐标不变;向右平移,点的横坐标增大,纵坐标不变;点向上平移,点的横坐标不变,纵坐标增大;向下平移,点的横坐标不变,纵坐标减小10、D【分析】利用轴对称图形的定义进行解答即可【详解】解:A、不是轴对称图形,故此选项不合题意;B、不是轴对称图形,故此选项不符合题意;C、不是轴对称图形,故此选项不合题意;D、是轴对称图形,故此选项符合题意;故选:D【点睛】此题主要考查了轴对称图形,关键是掌握如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形二、填空题1
14、、(8,4)或(-8,-4)-8,-4)或(8,4)【分析】作出图形,连接OA,分类讨论,并根据位似图形的相似比为2,且位似中心为原点,即可直接求出结果【详解】如图,连接OA,根据题意可分类讨论:设的位似三角形为,此时点在OA的延长线上,如图,它们的相似比为2,此时位似图形上与点A对应的点的坐标为(8,4)设的位似三角形为,此时点在OA的反向延长线上,如图,它们的相似比为2, ,此时位似图形上与点A对应的点的坐标为(-8,-4)故答案为:(8,4)或(-8,-4)【点睛】本题考查求位似图形的对应坐标,利用分类讨论和数形结合的思想是解答本题的关键2、 (5,1)【分析】利用坐标点平移的性质:左右
15、平移,对横坐标进行加减,上下平移对纵坐标进行加减,解决该题即可【详解】解:点P(2,3)向右平移3个单位再向下平移2个单位,即横坐标加3,纵坐标减2,所以平移后的点坐标为(5,1)故答案为:(5,1)【点睛】本题主要是考查了点坐标的平移,熟练掌握点坐标的上下左右平移与横纵坐标的关系,是求解该类问题的关键3、【分析】根据旋转角相等可得,进而勾股定理求解即可【详解】解:四边形是正方形将绕点B顺时针方向旋转,能与重合,故答案为:【点睛】本题考查了旋转的性质,勾股定理,求得旋转角相等且等于90是解题的关键4、3【分析】根据关于x轴的对称点的坐标特点:横坐标不变,纵坐标互为相反数可得m、n的值,进而可得
16、答案【详解】解:点A(m,5)与点B(2,n)关于x轴对称,m=-2,n=5,m+n=3,故答案是:3【点睛】本题主要考查了关于x轴对称的点的坐标,关键是掌握关于x轴的点的坐标特点5、【分析】先利用勾股定理计算出AB,从而得到ABC的周长为,根据旋转变换可得OAB的旋转变换为每3次一个循环,由于203=62,20与2状态相同,然后计算即可得到20的直角顶点横坐标【详解】解:A(0,1),B(1,0),OA=1,OB=1,,ABO的周长为,如图所示,作HNx轴,第1次的直角顶点的横坐标为0,第2次的直角顶点的横坐标为(三线合一),第3次的直角顶点的横坐标为,以后每连续3次后与原来的状态一样,20
17、3=62,20与2状态相同,其横坐标为:故答案为:【点睛】本题考查了坐标与图形变化-旋转:图形或点旋转之后要结合旋转的角度和图形的特殊性质来求出旋转后的点的坐标常见的是旋转特殊角度如:30,45,60,90,180解决本题的关键是确定循环的次数,属于中考选择题中的压轴题三、解答题1、(1)见详解;(2)【分析】(1)利用网格特点和旋转的性质画出A、B的对应点A1、B1即可(2)由勾股定理求出AC的长度,然后利用扇形的面积公式,即可求出答案【详解】解:(1)如图所示:(2)由勾股定理,则,线段AC在旋转过程中扫过的图形面积为:;【点睛】本题考查了作图旋转变换:根据旋转的性质可知,对应角都相等都等
18、于旋转角,对应线段也相等,由此可以通过作相等的角,在角的边上截取相等的线段的方法,找到对应点,顺次连接得出旋转后的图形,也考查了扇形的面积公式,勾股定理2、(1)见解析;(2)【分析】(1)根据旋转的性质:点B和点,点A和点到点N的距离相等,且即可;(2)线段AB扫过的面积为,由扇形面积公式计算即可【详解】(1)如图所示:(2)如图,线段AB扫过的面积=【点睛】本题考查旋转画图与扇形的面积公式,掌握不规则图形面积公式的求法是解题的关键3、(1)见解析;(2),见解析;(3)4【分析】(1)根据题意补全图形即可;(2)根据题意易得,即可推出即可利用“SAS”证明,得出结论(3)由结合题意可推出,
19、即证明ACF是等腰直角三角形,从而得出,再由勾股定理可求出CF的长,最后根据点F为CE中点,即可求出CE的长【详解】解:(1)依题意补全图形如下: (2)用等式表示线段BD与CE的数量关系是:,证明: 根据题意可知ABC是等腰直角三角形,AD绕点A逆时针旋转90得到AE, ,即,在和中,(3),ABC是等腰直角三角形,ACF是等腰直角三角形,在中,点F为CE中点,【点睛】本题考查等腰直角三角形的判定和性质,旋转的性质,三角形全等的判定和性质以及勾股定理利用数形结合的思想是解答本题的关键4、(1)见解析;(2)BDE=60【分析】(1)先证明BCG=DCE,再证明BCGDCE(SAS),从而可得
20、结论;(2)连接BE,证明BCG=BCE ,再证明BCGBCE(SAS),可得BD=BE=DE,从而可得结论.【详解】(1)证明:四边形ABCD和CEFG为正方形,BC=DC,CG=CE,BCD=GCE=90BCD+DCG=GCE+DCG,BCG=DCE,在BCG和DCE中,BCGDCE(SAS) BG=DE; (2)连接BE由(1)可知:BG=DE DCG=BDC=45BCG=BCD+GCD=90+45=135GCE=90BCE=360-BCG-GCE=360-135-90=135BCG=BCE BC=BC,CG=CE 在BCG和BCE中,BCGBCE(SAS)BG=BEBG=BD=DEBD
21、=BE=DEBDE为等边三角形BDE=60【点睛】本题考查的是全等三角形的判定与性质,等边三角形的判定与性质,正方形的性质,旋转的性质,利用旋转的性质确定相等的边与角是解本题的关键.5、(1)旋转中心为BC边的中点O,旋转方向为逆时针,旋转角度为90;(2)可以,旋转中心为为等边ABC三边垂直平分线的交点O,理由见解析;(3)【分析】问题背景(1)根据等腰直角三角形的性质,以及旋转的性质确定即可;尝试应用(2)首先通过证明ABD和CAE全等说明点A和点B对应,点C和点A对应,从而作AB和AC的垂直平分线,其交点即为旋转中点;拓展创新(3)首先确定出D点的运动轨迹,然后结合点与圆的位置关系,分别
22、讨论出CD最长和最短时的情况,并结合勾股定理进行求解即可【详解】解:问题背景(1)如图所示,作AOBC,交BC于点O,由等腰直角三角形的性质可知:AOC=90,OA=OC,点A是由点C绕点O逆时针旋转90得到,同理可得,点B是由点A绕点O逆时针旋转90得到,点D是由点E绕点O逆时针旋转90得到,ABD可以由CAE通过旋转变换得到,旋转中心为BC边的中点O,旋转方向为逆时针,旋转角度为90;尝试应用(2)ABC为等边三角形,AB=AC,BAC=60,DAC=DAB+BAC=AEC+EAC,BAC=AEC=60,DAB=ECA,在ABD和CAE中,ABDCAE(AAS),ABD的A、B、D三点的对
23、应点分别为CAE的C、A、E三点,则AC、AB分别视作两组对应点的连线,此时,如图所示,作AC和AB的垂直平分线交于点O,ABC为等边三角形,由等边三角形的性质可知,OC=OA=OB,AOC=120,ABD可以由CAE通过旋转变换得到,旋转中心为为等边ABC三边垂直平分线的交点O;拓展创新(3)由(1)知,在直线l旋转的过程中,总有ADB=90,点D的运动轨迹为以AB为直径的圆,如图,取AB的中点P,连接CP,交P于点Q,则当点D在CP的延长线时,CD的长度最大,当点D与Q点重合时,CD的长度最小,即CQ的长度,AB=AC,AB=2,AP=1,AC=2,在RtAPC中,由圆的性质,PD=AP=1,PD=PQ=1,CD的长的取值范围为:【点睛】本题主要考查旋转三要素的确定,以及旋转的性质,主要涉及等腰直角三角形和等边三角形的性质,全等三角形的判定与性质,以及动点最值问题,掌握旋转的性质,确定出动点的轨迹,熟练运用圆的相关知识点是解题关键