《2021-2022学年度强化训练北师大版八年级数学下册第六章平行四边形专题测评试卷(含答案详解).docx》由会员分享,可在线阅读,更多相关《2021-2022学年度强化训练北师大版八年级数学下册第六章平行四边形专题测评试卷(含答案详解).docx(26页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、北师大版八年级数学下册第六章平行四边形专题测评 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、小张在操场从原地右转40前行至十米的地方,再右转40前行十米处,继续此规则前行,问小张第一次回到原地时,共走了
2、( )米A70米B80米C90米D100米2、从n边形的一个顶点出发,可以作5条对角线,则n的值是()A6B8C10D123、如图,在平行四边形 ABCD 中,BC2AB8,连接 BD,分别以点B,D为圆心,大于BD长为半径作弧,两弧交于点E和点F,作直线EF交AD于点I,交BC于点H,点H恰为BC的中点,连接AH,则AH的长为( )AB6C7D44、如图,在平面直角坐标系中,平行四边形OABC的顶点A在x轴上,顶点B的坐标为(8,6).若直线l经过点(2,0),且直线l将平行四边形OABC分割成面积相等的两部分,则直线l对应的函数解析式是( )Ayx2By3x6CD5、如果一个多边形的每个内
3、角都是144,那么这个多边形的边数是()A5B6C10D126、一个正多边形的每个外角都等于45,则这个多边形的边数和对角线的条数分别是( )A8,20B10,35C6,9D5,57、若一个多边形的每一个内角均为120,则下列说法错误的是( )A这个多边形的内角和为720B这个多边形的边数为6C这个多边形是正多边形D这个多边形的外角和为3608、下列图形中,三角形ABC和平行四边形ABDE面积相等的是()ABCD9、若一个多边形的外角和与它的内角和相等,则这个多边形是( )A三角形B四边形C五边形D六边形10、如图,将三角形纸片ABC沿DE折叠,当点A落在四边形BCED的外部时,测量得170,
4、2132,则A为()A40B22C30D52第卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、如图,四边形ABCD中,ABCD,ADBC,且BAD、ADC的角平分线AE、DF分别交BC于点E、F若EF2,AB5,则AD的长为_2、如图,在ABCD中,点E是对角线AC上一点,过点E作AC的垂线,交边AD于点P,交边BC于点Q,连接PC、AQ,若AC6,PQ4,则PCAQ的最小值为_3、如图,在RtABC中,ACB=90,AB=5,BC=3,将ABC绕点B顺时针旋转得到AB C,其中点A,C的对应点分别为点连接,直线交于点D,点E为AC的中点,连接DE则DE的最小值为_4、已
5、知一个正五边形其一个内角的度数为 _5、正五边形的一个内角与一个外角的比_三、解答题(5小题,每小题10分,共计50分)1、如图,ACB90,CDAB于点D,AF平分CAB交CD于点E,交BC于点F,作EGAB交CB于点G(1)求证:CEF是等腰三角形;(2)求证:CFBG;(3)若F是CG的中点,EF1,求AB的长2、在Rt中,将绕点C顺时针旋转一定的角度得到,点A、B的对应点分别是D、E(1)当点E恰好在AC上时,如图1,求的大小;(2)若时,点F是边AC中点,如图2,猜想四边形BEDF的形状并说明理由3、如图,中,对角线AC、BD相交于点O,点 E, F,G,H分别是OA、OB、OC、O
6、D的中点,顺次连接EFGH(1)求证:四边形EFGH 是平行四边形(2)若的周长为2(AB+BC)=32,则四边形EFGH的周长为_4、在中,将ABO绕点O逆时针方向旋转90得到(1)则线段的长是_,_(2)连接求证四边形是平行四边形;(3)求四边形的面积?5、已知:如图甲,试用一条直线把图形分成面积相等的两部分(至少三种方法)-参考答案-一、单选题1、C【分析】先画出图形求出转的次数,由此确定前行的次数是9次,再根据乘法计算即可。【详解】解:如图,小张一共转了次,即前行了9次十米,小张第一次回到原地时,共走了米,故选:C【点睛】此题考查多边形的外角和公式,利用多边形的外角和求多边形的边数,熟
7、记多边形的外角和是解题的关键2、B【分析】根据从边形的一个顶点出发可以作条对角线即可得【详解】解:由题意得:,解得,故选:B【点睛】本题考查了多边形的对角线问题,熟练掌握“从边形的一个顶点出发可以作条对角线”是解题关键3、A【分析】连接DH,根据作图过程可得EF是线段BD的垂直平分线,证明DHC是等边三角形,然后证明AHD=90,根据勾股定理可得AH的长【详解】解:如图,连接DH,根据作图过程可知:EF是线段BD的垂直平分线,DH=BH,点H为BC的中点,BH=CH,BC=2CH,DH=CH,在ABCD中,AB=DC,AD=BC=2AB=8,DH=CH=CD=4,DHC是等边三角形,C=CDH
8、=DHC=60,在ABCD中,BAD=C=60,ADBC,DAH=BHA,AB=BH,BAH=BHA,BAH=DAH=30,AHD=90,AH=故选:A【点睛】本题考查了作图-基本作图,线段垂直平分线的性质,等边三角形的判定和性质,平行四边形的性质,勾股定理等知识点,解决本题的关键是掌握线段垂直平分线的作法4、C【分析】根据直线l将平行四边形OABC分割成面积相等的两部分,可得直线l过OB的中点,又根据中点公式可得OB的中点为,然后设直线l的解析式为,将点(2,0), 代入,即可求解【详解】解:直线l将平行四边形OABC分割成面积相等的两部分,直线l过平行四边形的对称中心,即过OB的中点,顶点
9、B的坐标为(8,6), ,即,设直线l的解析式为,将点(2,0), 代入,得:,解得:,直线l的解析式为,故选:C【点睛】本题主要考查了求一次函数解析式,平行四边形的性质,明确题意,得到直线l过平行四边形的对称中心是解题的关键5、C【分析】根据多边形的内角求出多边形的一个外角,然后根据多边形外角和等于,计算即可【详解】解:一个多边形的每个内角都是144,这个多边形的每个外角都是(180144)36,这个多边形的边数3603610故选:C【点睛】本题考查了多边形的外角和,熟知多边形外角和等于是解本题的关键6、A【分析】利用多边形的外角和是360度,正多边形的每个外角都是45,求出这个多边形的边数
10、,再根据一个多边形有条对角线,即可算出有多少条对角线【详解】解:正多边形的每个外角都等于45,36045=8,这个正多边形是正8边形,=20(条),这个正多边形的对角线是20条故选:A【点睛】本题主要考查的是多边的外角和,多边形的对角线及正多边形的概念和性质,任意多边形的外角和都是360,和边数无关正多边形的每个外角都相等任何多边形的对角线条数为条7、C【分析】先根据多边形的外角和求出这个多边形的边数,再根据多边形的内角和、正多边形的定义即可得【详解】解:多边形的每一个内角均为,这个多边形的每一个外角均为,这个多边形的边数为,则选项B说法正确;这个多边形的内角和为,则选项A说法正确;多边形的外
11、角和为,选项D说法正确;各边相等,各内角也相等的多边形叫做正多边形,选项C说法错误;故选:C【点睛】本题考查了多边形的内角和与外角和、正多边形的定义,熟练掌握多边形的内角和与外角和是解题关键8、C【分析】根据三角形的面积公式和平行四边形的面积公式解答即可【详解】解:三角形ABC的面积,平行四边形ABDE的面积428,不相等;三角形ABC的面积,平行四边形ABDE的面积428,相等;三角形ABC的面积,平行四边形ABDE的面积428,相等;三角形ABC的面积,平行四边形ABDE的面积428,相等;故选:C【点睛】此题考查平行四边形的性质,关键是根据三角形的面积公式和平行四边形的面积公式解答9、B
12、【分析】任意多边形的外角和为360,然后利用多边形的内角和公式计算即可【详解】解:设多边形的边数为n根据题意得:(n2)180360,解得:n4故选:B【点睛】本题主要考查的是多边形的内角和和外角和,掌握任意多边形的外角和为360和多边形的内角和公式是解题的关键10、B【分析】利用四边形的内角和定理求出,再利用三角形的内角和定理可得结果【详解】,故选:B【点睛】本题主要考查了多边形的内角和定理及三角形的内角和定理,关键是运用多边形的内角和定理求出的度数二、填空题1、8【分析】根据题意由平行线的性质得到ADFDFC,再由DF平分ADC,得ADFCDF,则DFCFDC,然后由等腰三角形的判定得到C
13、FCD,同理BEAB,则四边形ABCD是平行四边形,最后由平行四边形的性质得到ABCD,ADBC,即可得到结论【详解】解:ADBC,ADFDFC,DF平分ADC,ADFCDF,DFCCDF,CFCD,同理BEAB,ABCD,ADBC,四边形ABCD是平行四边形,ABCD,ADBC,ABBECFCD5,BCBE+CFEF5+528,ADBC8,故答案为:8【点睛】本题考查等腰三角形的判定和性质和平行线的性质以及平行四边形的性质等知识,解答本题的关键是熟练掌握平行线的性质以及平行四边形的性质2、【分析】利用平行四边形的知识,将的最小值转化为的最小值,再利用勾股定理求出MC的长度,即可求解;【详解】
14、过点A作且,连接MP,四边形是平行四边形,将的最小值转化为的最小值,当M、P、C三点共线时,的最小,在中,;故答案是:【点睛】本题主要考查了平行线的判定与性质,勾股定理,准确计算是解题的关键3、1【分析】过点A作交CD延长线于P,连接,证明,得到,从而得到DE为的中位线,则,要使得DE最小,则要最小,故当、B、C三点共线时的值最小,由此求解即可【详解】解:如图所示,过点A作交CD延长线于P,连接,由旋转的性质得:,在和中,D为的中点,又E为BC的中点,DE为的中位线,要使得DE最小,则要最小,当、B、C三点共线时的值最小,故答案为:1【点睛】本题主要考查了旋转的性质,全等三角形的性质与判定,三
15、角形中位线定理,平行线的性质,解题的关键在于能够做出辅助线构造全等三角形4、#【分析】先由正五边形的外角和为及每一个外角都相等求解一个外角,再根据这个外角与相邻的内角互补,从而可得答案.【详解】解:由正五边形的每一个外角都相等, 正五边形的每一个外角 正五边形的每一个内角为: 故答案为:【点睛】本题考查的是正多边形的内角,外角的性质,掌握正多边形的外角和为,每一个外角都相等是解本题的关键.5、【分析】根据公式分别求出一个内角与一个外角的度数,即可得到答案【详解】解:正五边形的一个内角的度数为,正五边形的一个外角的度数为,正五边形的一个内角与一个外角的比为,故答案为:【点睛】此题考查了正五边形的
16、内角度数及外角度数,熟记多边形的内角和与外角和公式是解题的关键三、解答题1、(1)见解析;(2)见解析;(3)【分析】(1)由余角的性质可得3=7=4,可得CE=CF,可得CEF为等腰三角形;(2)过E作EMBC交AB于M,得出平行四边形EMBG,推出BG=EM,由“AAS”可证CAEMAE,推出CE=EM,由三角形的面积关系可求GB的长;(3)证明CEF是等边三角形,求出BC,可得结论【详解】(1)证明:过E作EMBC交AB于M,EGAB,四边形EMBG是平行四边形,BGEM,BEMD,CDAB,ADCACB90,1+790,2+390,AE平分CAB,12,34,47,CECF,CEF是等
17、腰三角形;(2)证明:过E作EMBC交AB于M,则四边形EMBG是平行四边形,BG=EM,ADCACB90,CAD+B90,CAD+ACD90,ACDBEMD,在CAE和MAE中,CAEMAE(AAS),CEEM,CECF,EMBG,CFBG(3)CDAB,EGAB,EGCD,CEG90,CFFG,EFCFFG,CECF,CECFEF1,CEF是等边三角形,ECF60,BC3,B30,RtABC中解得【点睛】本题考查了平行四边形的性质和判定,三角形的内角和定理,全等三角形的性质和判定,等腰三角形的性质和判定等知识点,主要考查学生综合运用定理进行推理的能力,有一定的难度2、(1);(2)四边形B
18、EDF是平行四边形,见解析【分析】(1)根据旋转的性质可得,根据三角形内角和定理求得,根据余角的定义即可求得的大小;(2)连接AD,证明和为等边三角形,进而证明,得到,结合,即可证明四边形BEDF是平行四边形【详解】(1)解:绕点C顺时针旋转得到,点E恰好在AC上,;(2)四边形BEDF是平行四边形理由如下:如图2,连接AD点F是边AC中点,绕点C顺时针旋转60得到,和为等边三角形,又点F为的边AC的中点,在和中,而,四边形BEDF是平行四边形【点睛】本题考查了旋转的性质,含30度角的直角三角形的性质,等边三角形的性质与判定,三角形全等的性质与判定,平行四边形的判定,掌握以上知识是解题的关键3
19、、(1)见解析;(2)16【分析】(1)根据平行四边形的性质,可得OA=OC,OB=OD,从而得到OE=OG,OF=OH,即可求证;(2)根据三角形中位线定理,可得,从而得到 ,再由(1)四边形EFGH是平行四边形,即可求解【详解】(1)证明:四边形ABCD是平行四边形,OA=OC,OB=OD,点 E、 F、G、H分别是OA、OB、OC、OD的中点,OE=OG,OF=OH,四边形EFGH是平行四边形;(2)点 E、 F、G、H分别是OA、OB、OC、OD的中点, ,的周长为2(AB+BC)=32, , ,由(1)知:四边形EFGH是平行四边形,四边形EFGH的周长为 【点睛】本题主要考查了平行
20、四边形的判定和性质,三角形的中位线定理,熟练掌握平行四边形的判定和性质定理,三角形的中位线定理是解题的关键4、(1)6,;(2)见解析;(3)36【分析】(1)根据旋转的性质得出,由此可得答案;(2)根据题意可得,再根据平行四边形的判定即可得证;(3)利用平行四边形的面积公式求解【详解】解:(1),是等腰直角三角形,将绕点O沿逆时针方向旋转得到, ,故答案为:6,;(2)将绕点O沿逆时针方向旋转得到,四边形是平行四边形(3)四边形OAA1B1的面积=OAA1O=66=36四边形OAA1B1的面积是36【点睛】本题考查了旋转的性质以及平行四边形的判定,熟练掌握旋转的性质是解决本题的关键,注意:旋
21、转前后的两个图形全等5、见解析【分析】将不规则图形面积分为面积相等的两部分,将图形转化成两个中心对称图形(如果原图形本身就是中心对称图形,则直接过对称中心作直线即可),再由两点确定一条直线,过两个对称中心画直线即满足条件【详解】解:(1)如图所示,将图形分成两个平行四边形,分别连接两个平行四边形的对角线,产生两个交点,将两个交点连接即可得;(2)如图所示,将图形分成两个平行四边形,分别连接两个平行四边形的对角线,产生两个交点,将两个交点连接即可得;(3)如图所示,将不规则图形补全,然后按照(1)(2)方法,分别连接两个平行四边形的对角线,产生两个交点,将两个交点连接即可得;【点睛】题目主要考查中心对称图形的应用及平行四边形的性质,理解题意,掌握中心对称图形的应用是解题关键