《2021-2022学年度强化训练北师大版八年级数学下册第六章平行四边形专题测试试卷(精选).docx》由会员分享,可在线阅读,更多相关《2021-2022学年度强化训练北师大版八年级数学下册第六章平行四边形专题测试试卷(精选).docx(24页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、北师大版八年级数学下册第六章平行四边形专题测试 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、如图,一个等边三角形纸片,剪去一个角后得到一个四边形,则图中a的度数是( )A220B180C270D2402
2、、下列A:B:C:D的值中,能判定四边形ABCD是平行四边形的是( )A1:2:3:4B1:4:2:3C1:2:2:1D3:2:3:23、如图,在四边形中,ABCD,添加下列一个条件后,一定能判定四边形是平行四边形的是( )ABCD4、如图,在平行四边形 ABCD 中,BC2AB8,连接 BD,分别以点B,D为圆心,大于BD长为半径作弧,两弧交于点E和点F,作直线EF交AD于点I,交BC于点H,点H恰为BC的中点,连接AH,则AH的长为( )AB6C7D45、正八边形的外角和为( )ABCD6、如图,ABC以点O为旋转中心,旋转180后得到ED是ABC的中位线,经旋转后为线段已知,则BC的值是
3、( )A1B2C4D57、下列图形中,内角和为的多边形是( )ABCD8、一个正多边形的每个外角都等于45,则这个多边形的边数和对角线的条数分别是( )A8,20B10,35C6,9D5,59、如图,在ABC中,AC=BC=8,BCA=60,直线ADBC于点D,E是AD上的一个动点,连接EC,将线段EC绕点C按逆时针方向旋转60得到FC,连接DF,则在点E的运动过程中,DF的最小值是( )A1B1.5C2D410、如图所示,在 ABCD中,对角线AC,BD相交于点O,过点O的直线EF分别交AD于点E,BC于点F, ,则 ABCD的面积为( ) A24B32C40D48第卷(非选择题 70分)二
4、、填空题(5小题,每小题4分,共计20分)1、若某多边形从一个顶点所作的对角线为4条,则这个多边形共有_条对角线2、一个正多边形的每个外角都是45,则这个正多边形是正_边形3、如图,在中,、分别是、的中点,连结若,则_4、如图所示,在Rt中,CM是斜边AB上的中线,E、F分别为MB、BC的中点,若,则的面积为_5、如图,点F在正五边形ABCDE的内部,ABF为等边三角形,则AFC等于_三、解答题(5小题,每小题10分,共计50分)1、求下列图中的x的值(1)(2)2、如图,四边形ABCD是平行四边形,且分别交对角线于点E、F,连接ED、BF(1)求证:四边形BEDF是平行四边形;(2)若AEE
5、F,请直接写出图2中面积等于四边形ABCD的面积的的所有三角形3、如图,四边形ABCD是平行四边形,BAC90(1)尺规作图:在BC上截取CE,使CECD,连接DE与AC交于点F,过点F作线段AD的垂线交AD于点M;(不写作法,保留作图痕迹)(2)在(1)的条件下,猜想线段FM和CF的数量关系,并证明你的结论4、在等腰直角三角形ABC中,点E、F分别为AB,AC的中点,H为线段EF上一动点(不与点E,F重合),将线段AH绕点A逆时针方向旋转90得到AG,连接GC,HB(1)如图1,求证:;(2)如图2,连接GF,HG,HG交AF于点Q点H在运动的过程中,求证:;若,当为等腰三角形时,EH的长为
6、_5、已知,在中,E是AD边的中点,连接BE(1)如图,若BC=2,求AE的长;(2)如图,延长BE交CD的延长线于点F,求证:FD=AB-参考答案-一、单选题1、D【分析】如图(见解析),先根据等边三角形的定义可得,再根据四边形的内角和即可得【详解】解:如图,是等边三角形,即,故选:D【点睛】本题考查了多边形的内角和、等边三角形,熟练掌握多边形的内角和是解题关键2、D【分析】两组对角分别相等的四边形是平行四边形,所以A和C是对角,B和D是对角,对角的份数应相等【详解】解:根据平行四边形的判定:两组对角分别相等的四边形是平行四边形,所以只有D符合条件故选:D【点睛】本题考查了平行四边形的判定,
7、在应用判定定理判定平行四边形时,应仔细观察题目所给的条件,仔细选择适合于题目的判定方法进行解答,避免混用判定方法3、C【分析】由平行线的性质得,再由,得,证出,即可得出结论【详解】解:一定能判定四边形是平行四边形的是,理由如下:,又,四边形是平行四边形,故选:C【点睛】本题考查了平行四边形的判定,解题的关键是熟练掌握平行四边形的判定,证明出4、A【分析】连接DH,根据作图过程可得EF是线段BD的垂直平分线,证明DHC是等边三角形,然后证明AHD=90,根据勾股定理可得AH的长【详解】解:如图,连接DH,根据作图过程可知:EF是线段BD的垂直平分线,DH=BH,点H为BC的中点,BH=CH,BC
8、=2CH,DH=CH,在ABCD中,AB=DC,AD=BC=2AB=8,DH=CH=CD=4,DHC是等边三角形,C=CDH=DHC=60,在ABCD中,BAD=C=60,ADBC,DAH=BHA,AB=BH,BAH=BHA,BAH=DAH=30,AHD=90,AH=故选:A【点睛】本题考查了作图-基本作图,线段垂直平分线的性质,等边三角形的判定和性质,平行四边形的性质,勾股定理等知识点,解决本题的关键是掌握线段垂直平分线的作法5、A【分析】根据多边形的外角和都是即可得解【详解】解:多边形的外角和都是,正八边形的外角和为,故选:A【点睛】此题考查了多边形的内角与外角,熟记多边形的外角和是是解题
9、的关键6、C【分析】先根据旋转的性质可得ED ED2,再根据三角形的中位线定理求解即可【详解】解:ABC以点O为旋转中心,旋转180后得到ABC,ED是ABC的中位线,经旋转后为线段ED,EDED2,BC2ED4,故选C【点睛】本题考查旋转的性质、三角形的中位线定理,掌握旋转的性质是解题的关键7、C【分析】利用多边形的内角和公式求出多边形的边数,由此即可得出答案【详解】解:设这个多边形的边数是,则,解得,故选:C【点睛】本题考查了多边形的内角和,熟练掌握多边形的内角和是解题关键8、A【分析】利用多边形的外角和是360度,正多边形的每个外角都是45,求出这个多边形的边数,再根据一个多边形有条对角
10、线,即可算出有多少条对角线【详解】解:正多边形的每个外角都等于45,36045=8,这个正多边形是正8边形,=20(条),这个正多边形的对角线是20条故选:A【点睛】本题主要考查的是多边的外角和,多边形的对角线及正多边形的概念和性质,任意多边形的外角和都是360,和边数无关正多边形的每个外角都相等任何多边形的对角线条数为条9、C【分析】取线段AC的中点G,连接EG,根据等边三角形的性质以及角的计算即可得出CD=CG以及FCD=ECG,由旋转的性质可得出EC=FC,由此即可利用全等三角形的判定定理SAS证出FCDECG,进而即可得出DF=GE,再根据点G为AC的中点,即可得出EG的最小值,此题得
11、解【详解】解:取线段AC的中点G,连接EG,如图所示AC=BC=8,BCA=60,ABC为等边三角形,且AD为ABC的对称轴,CD=CG=AB=4,ACD=60,ECF=60,FCD=ECG,在FCD和ECG中,FCDECG(SAS),DF=GE当EGBC时,EG最小,点G为AC的中点,此时EG=DF=CD=BC=2故选:C【点睛】本题考查了等边三角形的性质以及全等三角形的判定与性质,三角形中位线的性质,解题的关键是通过全等三角形的性质找出DF=GE,本题属于中档题,难度不大,解决该题型题目时,根据全等三角形的性质找出相等的边是关键10、B【分析】先根据平行四边形的性质可得,再根据三角形全等的
12、判定定理证出,根据全等三角形的性质可得,从而可得,然后根据平行四边形的性质即可得【详解】解:四边形是平行四边形,在和中,则的面积为,故选:B【点睛】本题考查了平行四边形的性质、三角形全等的判定定理与性质等知识点,熟练掌握平行四边形的性质是解题关键二、填空题1、14【分析】根据对角线的概念,知一个多边形从一个顶点出发有(n3)条对角线,求出n的值,再根据多边形对角线的总数为n(n3),即可解答【详解】解:从某个多边形的一个顶点出发一共画出4条对角线,n34,n7,那么这个多边形对角线的总条数为:7(73)14故答案为:14【点睛】本题考查了多边形的对角线,解决本题的关键是熟记对角线条数的公式2、
13、八【分析】根据多边形的外角和等于即可得【详解】解:因为多边形的外角和等于,所以这个正多边形的边数是,即这个正多边形是正八边形,故答案为:八【点睛】本题考查了多边形的外角和,熟记多边形的外角和等于是解题关键3、8【分析】由D、E分别是AB、AC的中点可知,DE是ABC的中位线,根据三角形中位线定理解答即可【详解】解:D、E分别是AB、AC的中点,DE是ABC的中位线,BC=2DE,DE=4,BC=2DE=24=8故答案为: 8【点睛】此题考查的是三角形中位线的性质,即三角形的中位线平行于第三边且等于第三边的一半4、3【分析】根据三角形中位线定理求出CM,根据直角三角形的性质求出AB根据勾股定理得
14、出BC,求出,由中线的性质得,再根据中位线的性质可得结论【详解】解:E、F分别为MB、BC的中点,CM=2EF=5,ACB=90,CM是斜边AB上的中线,AB=2CM=10,ACB=90, CM是斜边AB上的中线,EF是的中位线, 故答案为:3【点睛】本题考查的是三角形中位线定理、直角三角形的性质,掌握三角形的中位线平行于第三边,并且等于第三边的一半是解题的关键5、126【分析】根据等边三角形的性质得到AFBF,AFBABF60,由正五边形的性质得到ABBC,ABC108,等量代换得到BFBC,FBC48,根据三角形的内角和求出BFC66,根据AFCAFBBFC即可得到结论【详解】解:ABF是
15、等边三角形,AFBF,AFBABF60,在正五边形ABCDE中,ABBC,ABC108,BFBC,FBCABCABF48,BFC66,AFCAFBBFC126,故答案为:126【点睛】本题考查了正多边形的内角和,等边三角形的性质,等腰三角形的性质,熟记正多边形的内角的求法是解题的关键三、解答题1、(1)65;(2)60【分析】(1)根据四边形内角和等于360,列方程即可求出x的值;(2)根据五边形内角和等于(5-2)180,列方程即可求出x的值【详解】解:(1)四边形内角和等于360,x+x+140+90=360,解得:x=65;(2)五边形内角和等于(5-2)180=540,x+2x+150
16、+120+90=540,解得:x=60【点睛】本题考查了四边形和五边形的内角和,熟练掌握n边形的内角和等于(n-2)180是解题的关键几何计算题中,如果依据题设和相关的几何图形的性质列出方程(或方程组)求解的方法叫做方程的思想;求角的度数常常要用到“n边形的内角和等于(n-2)180”这一隐含的条件2、(1)证明见解析;(2)【分析】(1)先证明再证明可得从而有 于是可得结论;(2)先证明再证明,从而可得结论.【详解】证明:(1) 四边形ABCD是平行四边形, ,BEF=DFE, 四边形BEDF是平行四边形.(2)由(1)得: 四边形BEDF是平行四边形, 四边形ABCD是平行四边形,SADF
17、=SDEC=SABF=SBEC=13SABCD.【点睛】本题考查的是平行四边形的判定与性质,熟练的运用一组对边平行且相等的四边形是平行四边形是证明的关键,第(2)问先确定面积为平行四边形ABCD的的三角形是解题的关键.3、(1)图形见解析;(2),证明见解析【分析】(1)以C为圆心CD长为半径画弧于BC交点即为E;连DE与AC交点即为F;过F作AD的垂直平分线与AD交点即为M;(2)证明DF平分,再利用角平分线的性质判定即可【详解】(1)图形如下:(2),证明如下:由(1)可得:,CECD四边形ABCD是平行四边形ADBC,ABCD,即DF平分BAC90【点睛】本题考查了作图-复杂作图:解决此
18、类题目的关键是熟悉基本几何图形的性质,结合几何图形的基本性质把复杂作图拆解成基本作图,逐步操作也考查了平行四边形的判定与性质4、(1)见解析;(2)见解析,或2【分析】(1)由旋转的性质可得,再由ABC是的等腰直角三角形,可得,由此即可证明;(2)证明AEHAFG(SAS),可得AFG=AEH=45,从而根据两角的和可得结论;分两种情况:i)如图3,AQ=QG时,ii)如图4,当AG=QG时,分别根据等腰三角形的性质可得结论【详解】(1)证明:由旋转得:, ABC是的等腰直角三角形, ;(2)证明:在等腰直角三角形ABC中, 点E,F分别为AB,AC的中点,EF是的中位线, ,; 分两种情况:
19、i)如图3,AQ=QG时,AQ=QG,QAG=AGQ,AGAH且AG=AH,AHG=AGH=45,AHG=AGH=HAQ=QAG=45,EAH=FAH=45,AE=AF,AH=AH,AEHAFH(SAS),AHE=AHF,AHE+AHF=180,AHE=AHF=90,EAH=AEH=45,AH=EH,由得,即,;ii)如图4,当AG=QG时,GAQ=AQG,AEH=AGQ=45,GAQ=AQG=67.5,EAQ=HAG=90,EAH=GAQ=67.5,AHE=EAH=67.5,EH=AE=2H为线段EF上一动点(不与点E,F重合),不存在AG=AQ的情况综上,当AQG为等腰三角形时,HE=2或
20、,故答案为:或2【点睛】本题是三角形的综合题,考查了旋转的性质,等腰直角三角形的性质和判定,等腰三角形的性质和判定,也考查了全等三角形的判定与性质,三角形中位线定理,第二问要注意分类讨论,不要丢解5、(1)AE=1;(2)见解析【分析】(1)根据平行四边形对边相等求解即可;(2)用“AAS”ABEDFE即可【详解】(1)解:四边形ABCD是平行四边形,BC=AD=2,E是AD边的中点,AE=1,(2)证明:E为AD中点,AE=DE,四边形ABCD是平行四边形,BACD,ABE=FBEA=FED,ABEDFE(AAS)FD=AB.【点睛】本题考查了平行四边形的性质和全等三角形的判定与性质,解题关键是熟练运用平行四边形的性质和全等三角形的判定进行证明推理