《2021-2022学年度强化训练北师大版八年级数学下册第六章平行四边形定向测评试题(名师精选).docx》由会员分享,可在线阅读,更多相关《2021-2022学年度强化训练北师大版八年级数学下册第六章平行四边形定向测评试题(名师精选).docx(23页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、北师大版八年级数学下册第六章平行四边形定向测评 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、如图,一张含有80的三角形纸片,剪去这个80角后,得到一个四边形,则1+2的度数是( )A200B240C26
2、0D3002、如图,已知四边形ABCD和四边形BCEF均为平行四边形,D60,连接AF,并延长交BE于点P,若APBE,AB3,BC2,AF1,则BE的长为()A5B2C2D33、如图,正五边形ABCDE的对角线AC、BD交于点P,那么( )A96B100C108D1154、如图,一个等边三角形纸片,剪去一个角后得到一个四边形,则图中的度数是( )A180B220C240D2605、七边形的内角和为( )A720B900C1080D14406、若一个多边形的外角和与它的内角和相等,则这个多边形是( )A三角形B四边形C五边形D六边形7、如图,平行四边形ABCD的周长为36,对角线AC,BD相交
3、于点O,点E是CD的中点,BD12,则DOE的周长是( )A12B15C18D248、一个多边形的内角和是外角和的5倍,则这个多边形是()A12B11C10D99、如图所示,ABCD,ADBC,则图中的全等三角形共有( )A1对B2对C3对D4对10、将正六边形与正五边形按如图所示方式摆放,公共顶点为O,且正六边形的边AB与正五边形的边DE在同一条直线上,则COF的度数是()A74B76C84D86第卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、如图,在平面直角坐标系中,等边ABC的顶点B、C的坐标分别为(2,0),(6,0),点N从A点出发沿AC向C点运动,连接ON交
4、AB于点M当边AB恰平分线段ON时,则=_2、若某多边形从一个顶点所作的对角线为4条,则这个多边形共有_条对角线3、如图,在ABC中,D,E分别是边AB,AC的中点,B50现将ADE沿DE折叠点A落在三角形所在平面内的点为A1,则BDA1的度数为 _4、如果一个多边形的内角和等于外角和的2倍,那么这个多边形的边数n=_5、一个多边形的边数增加2,则内角和与外角和增加的度数之和是_度三、解答题(5小题,每小题10分,共计50分)1、已知一个多边形的边数为(1)若,求这个多边形的内角和(2)若这个多边形的内角和的比一个四边形的外角和多,求的值2、如图,在ABC中,ABAC,ADBC于点D(1)若D
5、EAB交AC于点E,证明:ADE是等腰三角形;(2)若BC12,DE5,且E为AC中点,求AD的值3、如图的网格纸中,每个小方格都是边长为1个单位的正方形,三角形ABC的三个顶点都在格点上(每个小方格的顶点叫格点)(1)画出三角形ABC向上平移4个单位后的三角形A1B1C1;(2)画出三角形A1B1C1向左平移5个单位后的三角形A2B2C2;(3)经过(1)次平移线段AC划过的面积是 4、(1)四边形ABCD中,A140,D80如图1,若BC,则C_;如图2,若ABC的平分线BE交DC于点E,且,则_;如图3,若ABC和BCD的平分线相交于点E,则BEC_;(2)如图3,当,时,若ABC和BC
6、D的平分线交于点E,BEC与,之间的数量关系为_;(3)如图4,在五边形ABCDE中,ABE300,CP,DP分别平分BCD和EDC,求P的度数5、已知,在中,点D为BC的中点(1)观察猜想如图,若点E、F分别是AB、AC的中点,则线段DE与DF的数量关系是_;线段DE与DF的位置关系是_(2)类比探究如图,若点E、F分别是AB、AC上的点,且,上述结论是否仍然成立,若成立,请证明:若不成立,请说明理由;(3)解决问题如图,若点E、F分别为AB、CA延长线的点,且,请直接写出的面积-参考答案-一、单选题1、C【分析】三角形纸片中,剪去其中一个80的角后变成四边形,则根据多边形的内角和等于360
7、度即可求得1+2的度数【详解】解:根据三角形的内角和定理得:四边形除去1,2后的两角的度数为180-80=100,则根据四边形的内角和定理得:1+2=360-100=260故选:C【点睛】本题主要考查四边形的内角和,解题的关键是掌握四边形的内角和为360及三角形的内角和为1802、D【分析】过点D作DHBC,交BC的延长线于点H,连接BD,DE,先证DHC=90,再证四边形ADEF是平行四边形,最后利用勾股定理得出结果【详解】过点D作DHBC,交BC的延长线于点H,连接BD,DE,四边形ABCD是平行四边形,AB=3,ADC=60,CD=AB=3,DCH=ABC=ADC=60,DHBC, DH
8、C=90,ADC+CDH=90,CDH=30,在RtDCH中,CH=CD=,DH=,四边形BCEF是平行四边形,AD=BC=EF,ADEF,四边形ADEF是平行四边形,AFDE,AF=DE=1,AFBE,DEBE, ,故选D【点睛】本题考查了平行四边形的判定与性质,勾股定理,解题的关键是熟练运用这些性质解决问题3、C【分析】先根据正多边形的内角和求出的度数,再根据三角形的内角和定理可得的度数,同样的方法可得的度数,然后根据三角形的内角和定理、对顶角相等即可得【详解】解:五边形是正五边形,同理可得:,故选:C【点睛】本题考查了正多边形的内角和,熟练掌握正多边形的内角和是解题关键4、C【分析】根据
9、四边形内角和为360及等边三角形的性质可直接进行求解【详解】解:由题意得:等边三角形的三个内角都为60,四边形内角和为360,;故选C【点睛】本题主要考查多边形内角和及等边三角形的性质,熟练掌握多边形内角和及等边三角形的性质是解题的关键5、B【分析】根据多边形内角和公式即可求解【详解】解:七边形的内角和为:(7-2)180=900,故选:B【点睛】此题考查了多边形的内角和,熟记多边形的内角和公式是解题的关键6、B【分析】任意多边形的外角和为360,然后利用多边形的内角和公式计算即可【详解】解:设多边形的边数为n根据题意得:(n2)180360,解得:n4故选:B【点睛】本题主要考查的是多边形的
10、内角和和外角和,掌握任意多边形的外角和为360和多边形的内角和公式是解题的关键7、B【分析】根据平行四边形的对边相等和对角线互相平分可得,OBOD,又因为E点是CD的中点,可得OE是BCD的中位线,可得OEBC,所以易求DOE的周长【详解】解:ABCD的周长为36,2(BCCD)36,则BCCD18四边形ABCD是平行四边形,对角线AC,BD相交于点O,BD12,ODOBBD6又点E是CD的中点,OE是BCD的中位线,DECD,OEBC,DOE的周长ODOEDEBD(BCCD)6915,故选:B【点睛】本题考查了三角形中位线定理、平行四边形的性质解题时,利用了“平行四边形对角线互相平分”、“平
11、行四边形的对边相等”的性质8、A【分析】设这个多边形的边数为n,依据多边形的内角和是它的外角和的5倍列方程,即可得到n的值【详解】解:设这个多边形的边数为n,依题意得(n-2)180=5360,解得n=12,这个多边形是十二边形,故选:A【点睛】本题主要考查了多边形的内角和与外角和,解题时注意:多边形的外角和等于3609、D【分析】根据平行四边形的判定与性质,求解即可【详解】解:ABCD,ADBC四边形为平行四边形,、又,、图中的全等三角形共有4对故选:D【点睛】此题考查了平行四边形的判定与性质,全等三角形的判定与性质,解题的关键是掌握平行四边形的判定与性质10、C【分析】利用正多边形的性质求
12、出EOF,BOC,BOE即可解决问题【详解】解:由题意得:EOF108,BOC120,OEB72,OBE60,BOE180726048,COF3601084812084,故选:【点睛】本题考查正多边形,三角形内角和定理等知识,解题的关键是熟练掌握基本知识二、填空题1、【分析】过点作交于点,可得为的中位线,为的中位线,利用三角形中位线定理和等边三角形的性质得到:,即可求解【详解】解:过点作交于点,如下图:B、C的坐标分别为(2,0),(6,0),边AB恰平分线段ON点是的中点,是的中位线,又为等边三角形,故答案为【点睛】本题考查了三角形中位线定理,等边三角形的性质以及坐标与图形的性质,解题的关键
13、是正确作出辅助线,构造出三角形的中位线2、14【分析】根据对角线的概念,知一个多边形从一个顶点出发有(n3)条对角线,求出n的值,再根据多边形对角线的总数为n(n3),即可解答【详解】解:从某个多边形的一个顶点出发一共画出4条对角线,n34,n7,那么这个多边形对角线的总条数为:7(73)14故答案为:14【点睛】本题考查了多边形的对角线,解决本题的关键是熟记对角线条数的公式3、80【分析】由翻折的性质得ADEA1DE,由中位线的性质得DE/BC,由平行线的性质得ADEB50,即可解决问题【详解】解:由题意得:ADEA1DE;D、E分别是边AB、AC的中点,DE/BC,ADEBA1DE50,A
14、1DA100,BDA118010080故答案为:80【点睛】本题主要考查了翻折变换及其应用问题;同时还考查了三角形的中位线定理等几何知识点熟练掌握各性质是解题的关键4、6【分析】根据多边形内角和公式(n-2)180及多边形外角和始终为360可列出方程求解问题【详解】解:由题意得:(n-2)180=3602,解得:n=6;故答案为6【点睛】本题主要考查多边形内角和及外角和,熟练掌握多边形的内角和公式及外角和是解题的关键5、【分析】利用n边形的内角和公式且为整数,多边形外角和为即可解决问题【详解】解:根据边形的内角和可以表示成,可以得到增加条边时,边数变为,则内角和是,因而内角和增加:,外角和不变
15、即:一个多边形的边数增加,则内角和与外角和增加的度数之和是故答案为:【点睛】本题主要考查了多边形的内角和公式和外角和,是需要熟练掌握的内容三、解答题1、(1);(2)12【分析】(1)把,代入多边形内角和公式求解即可;(2)根据多边形内角和公式及多边形外角和为,列出一元一次方程求解即可【详解】解:(1)当时,这个多边形的内角和为.(2)由题意,得,解得:,的值为12【点睛】本题考查了多边形的内角和与外角和问题及一元一次方程应用,解题的关键是牢记多边形的内角和与外角和2、(1)见解析;(2)8【分析】(1)根据“三线合一”性质先推出BAD=CAD,再结合平行线的性质推出BAD=ADE,从而得到A
16、DE=EAD,即可根据“等角对等边”证明;(2)根据题意结合中位线定理可先推出AC=2DE,然后在RtADC中利用勾股定理求解即可【详解】(1)证:在ABC中,ABAC,ABC为等腰三角形,ADBC于点D,由“三线合一”知:BAD=CAD,DEAB交AC于点E,BAD=ADE,CAD=ADE,即:ADE=EAD,AE=DE,ADE是等腰三角形;(2)解:由“三线合一”知:BD=CD,BC=12,DC=6,E为AC中点,DE为ABC的中位线,AB=2DE,AC=AB=2DE=10,在RtADC中,AD=8【点睛】本题考查等腰三角形的性质与判定,勾股定理解三角形,以及三角形的中位线定理等,掌握等腰
17、三角形的基本性质,熟练运用中位线定理和勾股定理计算是解题关键3、(1)见解析;(2)见解析;(3)16【分析】(1)先找出A、B、C三个点平移后的位置,然后依次连接即可;(2)先找出、三个点平移后的位置,然后依次连接即可;(3)从图中可知线段AC划过的图形为平行四边形,根据平行四边形面积计算公式即可得【详解】解(1)先找出A、B、C三个点平移后的位置,然后依次连接即可,如图所示,即为所求;(2)先找出、三个点平移后的位置,然后依次连接即可,如图所示,即为所求;(3)线段AC划过的图形为平行四边形,故答案为:16【点睛】题目主要考查图形的平移方法及平行四边形的面积,熟练掌握图形的平移方法是解题关
18、键4、(1)70;60;110;(2);(3)60【分析】(1)根据四边形内角和为360度进行求解即可;先根据平行线的性质求出ABE=180-A=40,再由角平分线的定义求出ABC=2ABE=80,再由四边形内角和为360度进行求解即可;先根据四边形内角和为360度求出ABC+ACB =140,再由角平分线的定义得到,最后利用三角形内角和定理求解即可;(2)同(1)的方法求解即可;(3)同(1)的方法,先求出,然后根据角平分线的定义以及三角形内角和定理求解即可【详解】(1)A=140,D=80,B=C,故答案为:70;BEAD,A=140,ABE=180-A=40,BE平分ABC,ABC=2A
19、BE=80,C=360-A-D-ABC=60,故答案为:60;A140,D80,ABC+ACB=360-A-D=140,ABC和BCD的平分线相交于点E,故答案为:110;(2),ABC和BCD的平分线相交于点E,故答案为:;(3),又CP,DP分别平分BCD和EDC,.,【点睛】本题主要考查了四边形内角和,三角形内角和定理,多边形内角和公式,角平分线的定义,解题的关键在于能够熟练掌握多边形内角和公式5、(1),;(2)成立,证明见解析;(3)【分析】(1)由点E、F、D分别是AB、AC、BC的中点,可得,再由,得,由此即可得到答案;(2)连接,只需要证明,得到,即可得到结论;(3)连接AD,证明BDEADF得到,则,由此求解即可【详解】解:(1)点E、F、D分别是AB、AC、BC的中点,即,故答案为:,;(2)结论成立:,证明:如图所示,连接,D为BC的中点,且AD平分,在和中,即,即;(3)如图所示,连接AD,D为BC的中点,且AD平分,FAD=180-CAD=135,EBD=180-ABC=135,FAD=EBD,在在和中,BDEADF(SAS),【点睛】本题主要考查了三角形中位线定理,全等三角形的性质与判定,等腰直角三角形的性质等等,解题的关键在于能够熟练掌握全等三角形的性质与判定条件