原子物理第四章原子的精细结构ppt课件.ppt

上传人:飞****2 文档编号:29472203 上传时间:2022-07-31 格式:PPT 页数:80 大小:4.73MB
返回 下载 相关 举报
原子物理第四章原子的精细结构ppt课件.ppt_第1页
第1页 / 共80页
原子物理第四章原子的精细结构ppt课件.ppt_第2页
第2页 / 共80页
点击查看更多>>
资源描述

《原子物理第四章原子的精细结构ppt课件.ppt》由会员分享,可在线阅读,更多相关《原子物理第四章原子的精细结构ppt课件.ppt(80页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。

1、原子物理学(Atomic Physics) 第四章 原子的精细结构:电子的自旋第四章 原子的精细结构:电子的自旋原子物理学(Atomic Physics) 第四章 原子的精细结构:电子的自旋主要内容:主要内容:2 2、史特恩、史特恩- -盖拉赫实验盖拉赫实验4 4、碱金属双线、碱金属双线5 5、塞曼效应、塞曼效应1 1、电子轨道运动的磁矩、电子轨道运动的磁矩3 3、电子自旋的假设、电子自旋的假设原子物理学(Atomic Physics) 第四章 原子的精细结构:电子的自旋重重 点:点:1、一个假设:电子自旋、一个假设:电子自旋2、三个实验:碱金属双线、塞曼效应、史三个实验:碱金属双线、塞曼效应

2、、史-盖实验盖实验4、氢原子光谱的五步进展氢原子光谱的五步进展3、四个量子数:四个量子数:n、l、 、 lmsm原子物理学(Atomic Physics) 第四章 原子的精细结构:电子的自旋 如果用分辨率足够高的摄谱仪观察,可以发现原子光谱如果用分辨率足够高的摄谱仪观察,可以发现原子光谱中每条谱线并不是简单的一条线,而是由多条谱线组成。中每条谱线并不是简单的一条线,而是由多条谱线组成。 谱线的这种细微结构称为谱线的这种细微结构称为光谱的精细结构光谱的精细结构。 例如,氢原子的例如,氢原子的 线并不是单线,而是由七条谱线组成线并不是单线,而是由七条谱线组成;常见的钠原子黄光是由常见的钠原子黄光是

3、由 和和 两条很两条很靠近的谱线组成的,其波长差约为靠近的谱线组成的,其波长差约为0.6nm。 1588.996nm2589.593nmHNa0.6nm原子物理学(Atomic Physics) 第四章 原子的精细结构:电子的自旋4.1、原子中电子轨道运动的磁矩、原子中电子轨道运动的磁矩1、电偶极矩、电偶极矩l qp有关电磁学知识有关电磁学知识 0FEpEqlFlM)(lEqFqEqF原子物理学(Atomic Physics) 第四章 原子的精细结构:电子的自旋zi环形电流的磁矩环形电流的磁矩0iSn2 2、磁矩、磁矩 i方向与方向与 方向满足右手螺旋关系。方向满足右手螺旋关系。 0FBM均匀

4、磁场中:均匀磁场中:3 3、力和力矩、力和力矩力是引起力是引起动量动量变化的原因变化的原因:)(mdtdF 力矩是引起力矩是引起角动量角动量变化的原因变化的原因:dtLddtmdrFrM)(原子物理学(Atomic Physics) 第四章 原子的精细结构:电子的自旋一、经典表示式一、经典表示式电子轨道运动的闭合电流为:电子轨道运动的闭合电流为:Tei“- -”表示电流方向与电子运动方向相反表示电流方向与电子运动方向相反 面积:面积:21122dSr rdrdt一个周期扫过的面积:一个周期扫过的面积:220001112222TTTLSdSrdtmrdtLdtTmmm原子物理学(Atomic P

5、hysics) 第四章 原子的精细结构:电子的自旋磁力矩为磁力矩为B力矩将引起角动量的变化力矩将引起角动量的变化dLBdt则则dBdt 或者或者ddtB 拉莫尔进动拉莫尔进动 在外磁场在外磁场B中,一个高速旋转的磁矩并不向中,一个高速旋转的磁矩并不向B方向靠方向靠拢,而是以一定的角速度拢,而是以一定的角速度 绕绕B作进动,作进动, 的方向与的方向与B一一致。致。 旋磁比旋磁比2eeiSLLm 因此因此原子物理学(Atomic Physics) 第四章 原子的精细结构:电子的自旋原子物理学(Atomic Physics) 第四章 原子的精细结构:电子的自旋磁矩元磁矩元sindd 则则sinsin

6、dddtdt即即ddt因此,因此, 称为磁矩绕磁场方向进动的称为磁矩绕磁场方向进动的角速度角速度。考虑磁矩考虑磁矩 的进动的进动原子物理学(Atomic Physics) 第四章 原子的精细结构:电子的自旋 由于原子在磁场中附加了拉莫尔进动,会使其由于原子在磁场中附加了拉莫尔进动,会使其能量能量发生变化发生变化。进动角动量叠加到。进动角动量叠加到L在磁场方向的分量上,在磁场方向的分量上,将使系统能量增加(将使系统能量增加(L和和B方向一致或具有同向的分量)方向一致或具有同向的分量)(图(图a),或使系统能量减少(),或使系统能量减少(L和和B方向相反或具有反方向相反或具有反向的分量)(图向的分

7、量)(图b) 。LdLLdL原子物理学(Atomic Physics) 第四章 原子的精细结构:电子的自旋二、量子表示式二、量子表示式量子力学中角动量量子力学中角动量L是取量子化的是取量子化的1Ll ll 轨道角量子数轨道角量子数因此磁矩为因此磁矩为112leeLl ll lm 在在z方向的投影为方向的投影为,2l zzlleeLmmm 原子物理学(Atomic Physics) 第四章 原子的精细结构:电子的自旋即即1lBl l 0,1,2,l , l zlBm 0, 1,lml其中其中2Beem 玻尔磁子玻尔磁子22121122Beeeeac m e 磁相互作用比电相互作用小两个数量级!磁

8、相互作用比电相互作用小两个数量级!原子物理学(Atomic Physics) 第四章 原子的精细结构:电子的自旋三、角动量取向量子化三、角动量取向量子化 磁矩及其磁矩及其z分量的量子化分量的量子化来源于角动量空间取向的量来源于角动量空间取向的量子化子化L和和Lz的量子化的量子化磁矩及其磁矩及其z分量的是量子化的分量的是量子化的原子物理学(Atomic Physics) 第四章 原子的精细结构:电子的自旋原子物理学(Atomic Physics) 第四章 原子的精细结构:电子的自旋4.2、史特恩、史特恩-盖拉赫实验盖拉赫实验 前面已经讨论了,原子中电子轨道的大小、形状和电前面已经讨论了,原子中电

9、子轨道的大小、形状和电子运动的角动量,以及原子的内部能量都是量子化的。本子运动的角动量,以及原子的内部能量都是量子化的。本节要再从实验的角度讨论,在磁场和电场中,原子角动量节要再从实验的角度讨论,在磁场和电场中,原子角动量取向的量子化。取向的量子化。 1921年史特恩(年史特恩(Stern)和盖拉赫()和盖拉赫(Gerlach)从实)从实验中首次直接观察到了原子在外磁场中的取向量子化。验中首次直接观察到了原子在外磁场中的取向量子化。The Nobel Prize in Physics 1943原子物理学(Atomic Physics) 第四章 原子的精细结构:电子的自旋 在电炉在电炉O内使银蒸

10、发。银原子内使银蒸发。银原子通过狭缝通过狭缝S1和和S2后,形成细束,后,形成细束,经过一个不均匀的磁场区域,经过一个不均匀的磁场区域,在磁场的垂直方向行进。最后撞在磁场的垂直方向行进。最后撞在相片在相片P上,银原子经过的区域是上,银原子经过的区域是抽成真空的。当时在显像后的相片上看到两条黑斑,表示银抽成真空的。当时在显像后的相片上看到两条黑斑,表示银原子在经过不均匀磁场区域时已分成两束。原子在经过不均匀磁场区域时已分成两束。不均匀的磁场是由不对称的磁极产生的。不均匀的磁场是由不对称的磁极产生的。 实验的主要目的是要观察实验的主要目的是要观察 在磁场中取向情况。用不均在磁场中取向情况。用不均匀

11、的磁场是要把不同的匀的磁场是要把不同的 值的原子分出来。磁场对原子的值的原子分出来。磁场对原子的力是垂直于它的前进方向的,这样,原子的路径会偏转。力是垂直于它的前进方向的,这样,原子的路径会偏转。z原子物理学(Atomic Physics) 第四章 原子的精细结构:电子的自旋原子物理学(Atomic Physics) 第四章 原子的精细结构:电子的自旋 原子在纵向是作匀速直线运动,其速度原子在纵向是作匀速直线运动,其速度根据热平衡关系得到根据热平衡关系得到23mvkT而原子在横向受到磁场力的作用,将作加速运动,距离为而原子在横向受到磁场力的作用,将作加速运动,距离为则原子在磁场中运行的时间为则

12、原子在磁场中运行的时间为Dtv2112zFztm则在屏上偏离的距离为则在屏上偏离的距离为23zzBdDzzkT其中,其中,D为为P离磁场区中心的距离。离磁场区中心的距离。Bzz原子物理学(Atomic Physics) 第四章 原子的精细结构:电子的自旋 在相片上出现了两条黑斑,表示有两个在相片上出现了两条黑斑,表示有两个z2,即原子,即原子束分为两条。在上式中,除了束分为两条。在上式中,除了 外,其他都是常数,外,其他都是常数,因此,说明有两个因此,说明有两个 。zzcosz也就是说有两个也就是说有两个 值,即原子在磁场中有两个空值,即原子在磁场中有两个空间取向。这就有力地证明了原子在空间的

13、取向是间取向。这就有力地证明了原子在空间的取向是量子化的。量子化的。 如果测得相片上两黑斑的距离,再把式中其他数值代如果测得相片上两黑斑的距离,再把式中其他数值代入,就可以计算出入,就可以计算出 ,取,取 值分别为值分别为 和和 ,就得,就得到到 ,这样求得的,这样求得的 值正是一个玻尔磁子的理论值。值正是一个玻尔磁子的理论值。z0180偶数的出现,说明对原子的描述仍然不完整。偶数的出现,说明对原子的描述仍然不完整。Bzz原子物理学(Atomic Physics) 第四章 原子的精细结构:电子的自旋4.3、电子自旋的假设、电子自旋的假设一、乌伦贝克和古兹米特提出电子自旋假设一、乌伦贝克和古兹米

14、特提出电子自旋假设 要使要使2l+1为偶数,只有角动量为半整数,而轨道角动为偶数,只有角动量为半整数,而轨道角动量是不可能给出半整数的。量是不可能给出半整数的。 而且为了试图说明而且为了试图说明碱金属原子能级的双层结构碱金属原子能级的双层结构以及后面以及后面要提到的要提到的反常塞曼效应反常塞曼效应,在,在1925年,两位年轻的荷兰研究年,两位年轻的荷兰研究生乌楞贝克(生乌楞贝克(Uhlenbenck)和古德史密特()和古德史密特(Goudsmit)提出了关于提出了关于电子自旋电子自旋的大胆假设并解决了上述问题。的大胆假设并解决了上述问题。 原子物理学(Atomic Physics) 第四章 原

15、子的精细结构:电子的自旋 他们认为,电子不是一个质点,除了轨道运动之外,他们认为,电子不是一个质点,除了轨道运动之外,还存在着一种还存在着一种内禀运动内禀运动,称为,称为自旋自旋。与轨道运动相联系,。与轨道运动相联系,存在轨道角动量存在轨道角动量L L。与自旋运动相联系也存在一种角动量,。与自旋运动相联系也存在一种角动量,称为称为自旋角动量自旋角动量S S,它是保持不变的,是电子的属性之一,它是保持不变的,是电子的属性之一,所以也称为所以也称为电子的固有矩电子的固有矩。 S S的值与自旋量子数的值与自旋量子数s s有关,即有关,即 1Ss s原子物理学(Atomic Physics) 第四章

16、原子的精细结构:电子的自旋 价电子绕原子实运动时,在固定于电子上的一个价电子绕原子实运动时,在固定于电子上的一个坐标系中,就是相对于电子来说,带正电的原子实是坐标系中,就是相对于电子来说,带正电的原子实是绕电子运动的。电子会感受到一个绕电子运动的。电子会感受到一个磁场磁场的存在。这个的存在。这个磁场的方向就是原子实绕电子的角动量方向,因而也磁场的方向就是原子实绕电子的角动量方向,因而也就是电子轨道运动角动量的方向。电子既然感受到了就是电子轨道运动角动量的方向。电子既然感受到了这个磁场,它的自旋取向就要量子化。这个磁场,它的自旋取向就要量子化。 如果设自旋量子数为如果设自旋量子数为s s,按照关

17、于轨道角动量取向,按照关于轨道角动量取向的考虑,自旋角动量的取向也应该有的考虑,自旋角动量的取向也应该有2s+12s+1个。实验观察个。实验观察到的能级是双层的,所以自旋取向只有两个,到的能级是双层的,所以自旋取向只有两个,2s+1=22s+1=2,因此,因此,s=1/2s=1/2。 原子物理学(Atomic Physics) 第四章 原子的精细结构:电子的自旋它在它在z方向的分量只有两个方向的分量只有两个12zs 即自旋量子数在即自旋量子数在z方向的分量只能取方向的分量只能取12zsSm12sm 洛仑兹的质疑洛仑兹的质疑2252e eevIm rr可以估计出电子的赤道速度可以估计出电子的赤道

18、速度5e evm rv原子物理学(Atomic Physics) 第四章 原子的精细结构:电子的自旋代入电子的经典半径公式代入电子的经典半径公式2204eeerm c就有就有51v c 违反狭义相对论!违反狭义相对论! 正确的理解:电子确实具有正确的理解:电子确实具有 大小的自旋角动量,电大小的自旋角动量,电子自旋是一种子自旋是一种量子效应量子效应,把自旋看成电子的经典转动是不,把自旋看成电子的经典转动是不恰当的,它是电子的一种恰当的,它是电子的一种内禀属性内禀属性,没有经典对应。,没有经典对应。电子自旋是一个新的自由度,与其空间运动完全无关!电子自旋是一个新的自由度,与其空间运动完全无关!

19、原子物理学(Atomic Physics) 第四章 原子的精细结构:电子的自旋 根据量子力学,这些角动量的大小和相应的量子数有根据量子力学,这些角动量的大小和相应的量子数有如下关系:如下关系: 式中式中j j是是总角动量量子数总角动量量子数,它决定着总角动量,它决定着总角动量J J的大小。的大小。量子数量子数j j的取值由的取值由l l和和s s决定决定,1,jls lsls 1Ll l0,1,21ln轨道角动量:轨道角动量:1Ss s12s 自旋角动量:自旋角动量:1Jj j总角动量:总角动量:JLS电子的运动电子的运动= =轨道运动轨道运动+ +自旋运动自旋运动 原子物理学(Atomic

20、Physics) 第四章 原子的精细结构:电子的自旋 在无外磁场存在时,总角动在无外磁场存在时,总角动量量J J应该守恒,它的方向不变,应该守恒,它的方向不变,S S与与L L都绕它进动。进动时应该保都绕它进动。进动时应该保持持L L与与S S的夹角不变。的夹角不变。 在电子不受在电子不受外力矩外力矩作用时,其处于某一状态的总角动量作用时,其处于某一状态的总角动量J是守恒的。是守恒的。 自旋角动量应绕由轨道运动产生的磁场进动;同样,自旋角动量应绕由轨道运动产生的磁场进动;同样,轨道角动量也应绕自旋运动产生的磁场进动。轨道角动量也应绕自旋运动产生的磁场进动。 总之,电子自旋与轨道运动及绕总之,电

21、子自旋与轨道运动及绕J的附加运动会产生附加能量,造成能的附加运动会产生附加能量,造成能级精细分裂。级精细分裂。原子物理学(Atomic Physics) 第四章 原子的精细结构:电子的自旋 根据根据j的取值,相邻的的取值,相邻的j均相差均相差1,由于,由于s=1/2,所以对某一确定的所以对某一确定的 , 。l1 2,1 2jll 即当即当 时,时,j只有两个取值只有两个取值 ;当;当 时,时,j只有一个值只有一个值1/2。0l 0l 1 2jl 例例1、求、求p电子的电子的L,S和和J的大小,并画出矢量图。的大小,并画出矢量图。解:解:p电子对应的量子数为电子对应的量子数为1,1 2ls所以所

22、以13 11,22 2j 原子物理学(Atomic Physics) 第四章 原子的精细结构:电子的自旋1 1 12L 1 1312 22S3 23 31512 22jJ1 21 1312 22jJ2222cosJLSLS222(1)(1)(1)cos22(1)(1)LSJl ls sj jLSl ls s 和和 不是平不是平行或反平行,而是行或反平行,而是有一定的夹角。有一定的夹角。 LS原子物理学(Atomic Physics) 第四章 原子的精细结构:电子的自旋二、朗德二、朗德g因子因子单电子原子的总磁矩单电子原子的总磁矩 原子内部封闭壳层的总轨道角动量和总自旋角动量原子内部封闭壳层的总

23、轨道角动量和总自旋角动量均为零,对原子磁矩没有贡献,只须考虑外层价电子。均为零,对原子磁矩没有贡献,只须考虑外层价电子。电子作轨道运动时伴随有轨道磁矩电子作轨道运动时伴随有轨道磁矩l2llegLm 1lg 电子具有自旋磁矩电子具有自旋磁矩s2ssegSm 2sg 原子物理学(Atomic Physics) 第四章 原子的精细结构:电子的自旋 原子的总角动量为原子的总角动量为J=L+S,总磁矩为,总磁矩为 ,由,由于于 ,因此,因此 不与不与J反平行。孤立原子的总角动量反平行。孤立原子的总角动量J是是守恒量,而轨道角动量守恒量,而轨道角动量L,自旋角动量,自旋角动量S和总磁矩和总磁矩 不是守不是

24、守恒量,它们绕恒量,它们绕J进动,不断改变方向。进动,不断改变方向。 在在- J方向的分量方向的分量 是守恒量,因此一般将是守恒量,因此一般将 定义为定义为总磁矩总磁矩。lslsggjjLJSls 要计算要计算 ,只需把,只需把 和和 在在J延长延长线上的分量相加就可以了线上的分量相加就可以了jls coscosjlsljsj由余弦定理可得由余弦定理可得 2222cosSLJLJlj原子物理学(Atomic Physics) 第四章 原子的精细结构:电子的自旋由此可得由此可得 222cos2JLSLljJ又又 2222cosLSJSJsj因此因此 222cos2JLSSsjJ代入总磁矩表达式代

25、入总磁矩表达式22221222jJLSeeJgJJmm222212JLSgJ 朗德朗德g因子因子LJSls原子物理学(Atomic Physics) 第四章 原子的精细结构:电子的自旋于是于是111121j jl ls sgj j 朗德朗德g因子随不同的耦合类型有两种计算法因子随不同的耦合类型有两种计算法(1)对)对LS耦合耦合111121J JL LS SgJ J 这里的这里的J,L,S是各电子耦合后的数值。是各电子耦合后的数值。(2)对)对jj耦合耦合11222211121111112121JJj jjjjjj jjjjjgggj jj j原子物理学(Atomic Physics) 第四章

26、 原子的精细结构:电子的自旋11P2/32P2/14D例例2 2、求下列原子态的、求下列原子态的g g因子:因子:解:解:) 1(2) 1() 1() 1(1jjsslljjg(1) : , , ,11P0s1l1j1g(2) : , , ,2/32P12s 1l23j34g(3) : , , ,2/14D23s2l21j0gjsLn12 原子物理学(Atomic Physics) 第四章 原子的精细结构:电子的自旋四、史特恩四、史特恩 - 盖拉赫实验的解释盖拉赫实验的解释 考虑电子的自旋后,原子的总磁矩是由考虑电子的自旋后,原子的总磁矩是由轨道磁矩轨道磁矩和和自旋磁矩自旋磁矩两部分合成的,于

27、是两部分合成的,于是23zzBdDzzkT可表示为可表示为23zJJBBdDzm gzkT ,1,JmJ JJ即对应一个即对应一个J,有,有2J+1个个 值,即有值,即有2J+1条黑斑。条黑斑。Jm原子物理学(Atomic Physics) 第四章 原子的精细结构:电子的自旋 因此,根据上式,我们就可以解释史特恩因此,根据上式,我们就可以解释史特恩-盖拉赫实盖拉赫实验的结果。验的结果。原子物理学(Atomic Physics) 第四章 原子的精细结构:电子的自旋 由实验测得黑线条数可以推得未知状态原子的由实验测得黑线条数可以推得未知状态原子的J值。值。例如,当有两条黑线时,例如,当有两条黑线时

28、,J=1/2;三条黑线时,;三条黑线时,J=1;五;五条黑线时,条黑线时,J=2等等。测出了等等。测出了S的大小,并推断出的大小,并推断出J值后,值后,由上式就可以求出原子的朗德因子由上式就可以求出原子的朗德因子g,从而得到有关原子,从而得到有关原子态的信息。态的信息。 对基态银原子,测得黑线条数为对基态银原子,测得黑线条数为2,可以知道其,可以知道其J=1/2。由于轨道角动量量子数是整数,此时必然有。由于轨道角动量量子数是整数,此时必然有L=0,因此也必有,因此也必有J=S=1/2,所以银原子的基态为,所以银原子的基态为 21 2S 可见磁场中基态银原子束的分裂,完全是由于可见磁场中基态银原

29、子束的分裂,完全是由于电子电子自旋运动自旋运动引起的。实验结果证明了自旋量子数为引起的。实验结果证明了自旋量子数为1/2的的正确性,因此该实验是电子存在自旋运动的有力证明。正确性,因此该实验是电子存在自旋运动的有力证明。 原子物理学(Atomic Physics) 第四章 原子的精细结构:电子的自旋外场方向投影:外场方向投影:, s zsBemm 共两个共两个 偶偶数数, ,与实验结果相符与实验结果相符。 19281928年,年,DiracDirac从量子从量子力学的基本方程出发,很力学的基本方程出发,很自然地导出了电子自旋的自然地导出了电子自旋的性质,为这个假设提供了性质,为这个假设提供了理

30、论依据。理论依据。 原子的磁矩原子的磁矩= =电子轨道运动的磁矩电子轨道运动的磁矩+ +电子自旋运动磁矩电子自旋运动磁矩+ +核磁矩。核磁矩。原子物理学(Atomic Physics) 第四章 原子的精细结构:电子的自旋史特恩史特恩-盖拉赫实验在历史上有重要意义盖拉赫实验在历史上有重要意义 证明了空间量子化的事实证明了空间量子化的事实 证明电子自旋假设的正确,而且证明电子自旋假设的正确,而且s=1/2 证明电子自旋磁矩数值的正确,证明电子自旋磁矩数值的正确, ,, s zB 2sg 他们同时也提出了一个重要的实验方法,其装置可以他们同时也提出了一个重要的实验方法,其装置可以做成做成粒子磁能态选

31、择器粒子磁能态选择器。例如,在磁铁后面适当位置上安。例如,在磁铁后面适当位置上安放狭缝,可以选择处于某一能态的粒子通过,这类技术后放狭缝,可以选择处于某一能态的粒子通过,这类技术后来被广泛应用。来被广泛应用。 原子物理学(Atomic Physics) 第四章 原子的精细结构:电子的自旋NaH Li0.6nm为什么会这样?为什么会这样?其所反映出的本质是什么?其所反映出的本质是什么?Question:4.4、碱金属双线、碱金属双线原子物理学(Atomic Physics) 第四章 原子的精细结构:电子的自旋一、碱金属谱线的精细结构:定性考虑一、碱金属谱线的精细结构:定性考虑光光谱谱项项值值厘厘

32、米米- -1 10 01 10 00 00 00 02 20 00 00 00 03 30 00 00 00 04 40 00 00 00 0l l= =0 0l l= =1 1l l= =2 2l l= =3 3n nH H8 87 76 65 5s sp pd df f4 43 32 22 22 23 33 33 34 44 44 44 45 55 55 55 5主主线线系系第第二二辅辅线线系系第第一一辅辅线线系系柏柏格格曼曼系系锂锂原原子子能能级级跃跃迁迁图图原子物理学(Atomic Physics) 第四章 原子的精细结构:电子的自旋主线系和第二辅线系主线系和第二辅线系 双线双线 例如

33、,著名的钠原子黄光是由例如,著名的钠原子黄光是由 和和 两条很靠近的谱线组成的,其波长差为两条很靠近的谱线组成的,其波长差为0.6nm0.6nm。 1589nm2589.6nm1 1、碱金属光谱的精细结构、碱金属光谱的精细结构第一辅线系和柏格曼系第一辅线系和柏格曼系 三线三线 主要规律:主要规律:谱线的这种细微结构称为谱线的这种细微结构称为光谱的精细结构光谱的精细结构。 原子物理学(Atomic Physics) 第四章 原子的精细结构:电子的自旋 主线系主线系双线双线的间隔随波数的增加而逐渐减小,最后并的间隔随波数的增加而逐渐减小,最后并入一个入一个线系限线系限。 第二辅线系第二辅线系双线双

34、线的间隔随波数的增加的间隔随波数的增加不变不变。 第一辅线系的第一辅线系的三线三线结构,最外两条线的间隔同第二辅结构,最外两条线的间隔同第二辅线系双线间隔相同,而三线结构中波数较小的两条线的线系双线间隔相同,而三线结构中波数较小的两条线的间隔随波数的增加而减小,最后并入一个间隔随波数的增加而减小,最后并入一个线系限线系限。主线系第二辅线系第一辅线系第一条第二条第三条第四条线系限原子物理学(Atomic Physics) 第四章 原子的精细结构:电子的自旋从光谱的实验事实,推出能级的结构从光谱的实验事实,推出能级的结构 由主线系的特点,双线的间隔随波数的增加而逐渐减由主线系的特点,双线的间隔随波

35、数的增加而逐渐减少,我们可以得到,少,我们可以得到,p p能级是能级是双层结构双层结构,其,其间隔随着量子数间隔随着量子数n n的增加而减小的。的增加而减小的。 2 2、碱金属能级的精细结构、碱金属能级的精细结构主线系 对第二辅线系,它的双线间隔相同,应该是同一个原对第二辅线系,它的双线间隔相同,应该是同一个原因造成的,即跃迁因造成的,即跃迁下能级的双层结构下能级的双层结构。第二辅线系原子物理学(Atomic Physics) 第四章 原子的精细结构:电子的自旋 对于第一辅线系的对于第一辅线系的三线三线结结构,我们可以设想它是在两个构,我们可以设想它是在两个双层结构之间进行跃迁。双层结构之间进

36、行跃迁。第一辅线系dp 其中,各个跃迁中有一条谱其中,各个跃迁中有一条谱线没有出现,是由于其它的原线没有出现,是由于其它的原因(因(选择定则选择定则)造成的。)造成的。原子物理学(Atomic Physics) 第四章 原子的精细结构:电子的自旋 碱金属原子除了碱金属原子除了l=0l=0的的s s能级外其余能级外其余p p、d d、f f等能级都等能级都是由两个很靠近的能级所组成,或者说,这些能级都分是由两个很靠近的能级所组成,或者说,这些能级都分裂为两个靠近的能级。裂为两个靠近的能级。 对同一个对同一个l l值,双层能级间隔随量子数值,双层能级间隔随量子数n n增加而减小;增加而减小; 对同

37、一个对同一个n n值,双层能级间隔随值,双层能级间隔随l l值的增加而减小;值的增加而减小;例如例如n=4n=4,4d4d的双层间隔小于的双层间隔小于4p4p的,而的,而4f4f的又小于的又小于4d4d的。的。 总之,碱金属原子的能级是一个双层结构的能级,总之,碱金属原子的能级是一个双层结构的能级,只有这样才能说明碱金属原子光谱的精细结构。只有这样才能说明碱金属原子光谱的精细结构。 碱金属原子能级特点碱金属原子能级特点原子物理学(Atomic Physics) 第四章 原子的精细结构:电子的自旋二、自旋二、自旋- -轨道相互作用:精细结构的定量考虑轨道相互作用:精细结构的定量考虑 原子中除了静

38、电相互作用外,原子中除了静电相互作用外,还有还有磁相互作用磁相互作用。由于磁相互作用而产生的能量变化由于磁相互作用而产生的能量变化cosEBB 原子物理学(Atomic Physics) 第四章 原子的精细结构:电子的自旋按照毕奥按照毕奥- -萨伐尔定律,电子感受到的磁场为萨伐尔定律,电子感受到的磁场为*000333()444ppqrrmZ eZ eLBrmrm r *0,34l ssZ eeEBSLmmr LSrmeZ322*04所以所以eevrZ e核坐标系核坐标系电子坐标系电子坐标系epvrBZ eL原子物理学(Atomic Physics) 第四章 原子的精细结构:电子的自旋cosco

39、sS LSLSL *22,223011 (1)(1)(1)()442l sZ ehEj jl ls sm c r0021c 其中其中21 (1)(1)(1)()22hj jl ls s因此因此r r是一个变量,用平均值代替:是一个变量,用平均值代替:*333311()1()(1)2Zra n l llLJScosSL 原子物理学(Atomic Physics) 第四章 原子的精细结构:电子的自旋代入整理,并考虑坐标变换的相对论效应得代入整理,并考虑坐标变换的相对论效应得2*4,3(1)(1)(1)122()(1)2l sRhcZj jl ls sEn l ll 对每一对双层能级,对每一对双层能

40、级,n n和和l l是相同的,是相同的,s=1/2s=1/2,只有,只有j j不不同,同,j=l+1/2j=l+1/2,j=l-1/2j=l-1/2,把这两个,把这两个j j值分别代入能量公式值分别代入能量公式中,得到中,得到 243111221lsRchZlEnll 12jl 12jl 原子物理学(Atomic Physics) 第四章 原子的精细结构:电子的自旋于是,双层能级的能量差为于是,双层能级的能量差为 241 21 2321j lj lRchZEEn l l 用波数表示,就是用波数表示,就是24321RZn l l即在即在n n相同相同l l不同的诸能级中,不同的诸能级中,l l值

41、越大的,双层能级间值越大的,双层能级间隔越小;在隔越小;在l l相同相同n n不同的诸能级中,不同的诸能级中,n n值越大的双层能值越大的双层能级间隔越小,当级间隔越小,当 时,双层能级并为单层。时,双层能级并为单层。 n 原子物理学(Atomic Physics) 第四章 原子的精细结构:电子的自旋三、讨论三、讨论1 1、能级由、能级由n n,j j,l l三个量子数决定三个量子数决定当当 时,时, ,能级不分裂;,能级不分裂;0lsj 当当 时,时, ,能级分裂为双层。,能级分裂为双层。0l 1/2jl 2 2、能级分裂的间隔由、能级分裂的间隔由n n,l l决定决定2*432(1)Rhc

42、Zn l l3 3、双层能级中,、双层能级中,j j值较大的能级较高值较大的能级较高fdpEEE444当当n n一定时,一定时, 大,大, 小,即小,即 El 当当 一定时,一定时, 大,大, 小,即小,即 En l234pppEEE 原子物理学(Atomic Physics) 第四章 原子的精细结构:电子的自旋5 5、碱金属原子态符号、碱金属原子态符号jsLn12 3n0l1 2j 2/123 S例如例如 1l3 2j 2/323 P2/123 P1 2j 2l2/523 D2/323 D3 2j 5 2j 4 4、单电子辐射跃迁的选择定则、单电子辐射跃迁的选择定则1l1, 0 j 可见,产

43、生辐射的跃迁是有选择性的。上述选择定则可见,产生辐射的跃迁是有选择性的。上述选择定则是经验性的,在量子力学中有理论的推导。是经验性的,在量子力学中有理论的推导。原子物理学(Atomic Physics) 第四章 原子的精细结构:电子的自旋四、对碱金属光谱精细结构的解释(四、对碱金属光谱精细结构的解释(以锂原子为例以锂原子为例)1 1、主线系:、主线系:nps 21l 0, 1j 21/2n P23/2 n P2 2、第二辅线系:、第二辅线系:nsp 221/22 P23/22 P1l 0, 1j 21/22 S21/2n S原子物理学(Atomic Physics) 第四章 原子的精细结构:电

44、子的自旋3 3、第一辅线系:、第一辅线系:ndp 223/2n D25/2 n D4 4、基线系:、基线系:nfd 325/2n F27/2n F23/22 P21/22 P1l 0, 1j 25/23 D23/23 D1l 0, 1j 原子物理学(Atomic Physics) 第四章 原子的精细结构:电子的自旋思考思考 如果原子核外有两个如果原子核外有两个价电子情况怎样?价电子情况怎样?问题解决问题解决碱金属的双线是由于电子自旋碱金属的双线是由于电子自旋- -轨道相互作用造成的!轨道相互作用造成的!原子物理学(Atomic Physics) 第四章 原子的精细结构:电子的自旋4.5、塞曼效

45、应、塞曼效应 18961896年,荷兰物理学家塞曼发现:若把光源放入磁场中,年,荷兰物理学家塞曼发现:若把光源放入磁场中,则一条谱线就会分裂成几条,这种现象称为则一条谱线就会分裂成几条,这种现象称为塞曼效应塞曼效应。The Nobel Prize in Physics 1902发现塞曼效应发现塞曼效应谱线的分裂,表明能级发生了分裂。谱线的分裂,表明能级发生了分裂。原子物理学(Atomic Physics) 第四章 原子的精细结构:电子的自旋反常塞曼效应:反常塞曼效应:相应于非单态谱线在外磁场中的分裂。相应于非单态谱线在外磁场中的分裂。 正常塞曼效应:正常塞曼效应:相应于单态谱线在外磁场中的分裂

46、称相应于单态谱线在外磁场中的分裂称为正常塞曼效应。为正常塞曼效应。 帕邢帕邢-贝克效应:贝克效应:如果外磁场足够强,自旋与轨道耦合将如果外磁场足够强,自旋与轨道耦合将被破坏,磁量子数被破坏,磁量子数 , 对应的简并能级被外磁场消除。对应的简并能级被外磁场消除。 lmsm原子物理学(Atomic Physics) 第四章 原子的精细结构:电子的自旋 镉(镉(Cd)的)的643.847nm谱线的塞曼效应谱线的塞曼效应 钠的黄色双线的塞曼效应钠的黄色双线的塞曼效应 原子物理学(Atomic Physics) 第四章 原子的精细结构:电子的自旋一、正常塞曼效应一、正常塞曼效应1、原子的磁矩、原子的磁矩

47、 原子磁性问题的关键是原子的磁矩。原子内部原子原子磁性问题的关键是原子的磁矩。原子内部原子实的总轨道角动量和总自旋角动量均为零,对原子磁矩实的总轨道角动量和总自旋角动量均为零,对原子磁矩没有贡献,只须考虑外层价电子。没有贡献,只须考虑外层价电子。 2) 1(hllLiiiiilLme2轨道运动:轨道运动:2) 1(hssSiiiiisSme自旋运动:自旋运动:原子的磁矩原子的磁矩 电子的轨道磁矩电子的轨道磁矩+ +电子的自旋磁矩电子的自旋磁矩(1)原子的总磁矩)原子的总磁矩原子物理学(Atomic Physics) 第四章 原子的精细结构:电子的自旋L-SL-S耦合耦合总轨道角动量:总轨道角动

48、量:iiLL总轨道磁矩:总轨道磁矩:LmeLmeiiilil22总自旋角动量:总自旋角动量:iiSS总自旋磁矩:总自旋磁矩:SmeSmeiiisis总角动量:总角动量:SLJ总磁矩:总磁矩:)(2)2(2SJmeSLmesl原子物理学(Atomic Physics) 第四章 原子的精细结构:电子的自旋(2)原子的有效磁矩)原子的有效磁矩 守恒;守恒; 绕绕 旋进,不守恒。旋进,不守恒。JJ将将 分解成两个分量分解成两个分量J:与与 反平行,沿反平行,沿 的反向延长线。的反向延长线。JJLJSls:与与 垂直,一个周期内的平均值为垂直,一个周期内的平均值为0。JJmegJ2所以所以Lmel2Sm

49、es比较:比较:1lg2sg得:得: 原子物理学(Atomic Physics) 第四章 原子的精细结构:电子的自旋具有磁矩为具有磁矩为 的体系,在外磁场的体系,在外磁场B中的附加能量为中的附加能量为cos()JJJEBBB )cos(BJBJ)cos(2BJBJmegzBJmeg2其中:其中:cos( ,)2zJhJJJ Bm 为总角动量在外场方向的分量,是量子化的。为总角动量在外场方向的分量,是量子化的。,1,Jmj jj原子物理学(Atomic Physics) 第四章 原子的精细结构:电子的自旋JBEm gB因此因此21hEE 考虑一个原子的两个能级考虑一个原子的两个能级 , 之间的跃

50、迁,无之间的跃迁,无外磁场时,跃迁的能量为外磁场时,跃迁的能量为 1E2E在外磁场中,两个能级的能量分别为在外磁场中,两个能级的能量分别为 2222JBEEm gB 1111JBEEm gB 因此每一个能级都分裂为因此每一个能级都分裂为2J+1个。个。原子物理学(Atomic Physics) 第四章 原子的精细结构:电子的自旋跃迁的能量为跃迁的能量为 21212211JJBhEEEEm gm gB2211JJBhm gm gB体系的总自旋为体系的总自旋为0时时 211gg则则21JJBhhmmB 再根据选择定则再根据选择定则 210, 1JJJmmm0Jm产生产生 线(线(0 0除外)除外)

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 教育专区 > 教案示例

本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

工信部备案号:黑ICP备15003705号© 2020-2023 www.taowenge.com 淘文阁