《高中数学必修一第三章-公开课教案课件课时训练练习教案课件.docx》由会员分享,可在线阅读,更多相关《高中数学必修一第三章-公开课教案课件课时训练练习教案课件.docx(13页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、3.1.2用二分法求方程的近似解学习目标1.能用二分法求出方程的近似解.2.知道二分法是求方程近似解的一种常用方法,体会“逐步逼近”的思想知识链接现有一款手机,目前知道它的价格在5001 000元之间,你能在最短的时间内猜出与它最近的价格吗?(误差不超过20元),猜价格方案:(1)随机;(2)每次增加20元;(3)每次取价格范围内的中间价,采取哪一种方案好呢?预习导引1二分法的定义对于在区间a,b上连续不断且f(a)f(b)0的函数yf(x),通过不断地把函数f(x)的零点所在的区间一分为二,使区间的两个端点逐步逼近零点,进而得到零点近似值的方法叫做二分法2二分法的步骤给定精确度,用二分法求函
2、数f(x)零点近似值的步骤如下:(1)确定区间a,b,验证f(a)f(b)0,给定精确度;(2)求区间(a,b)的中点c;(3)计算f(c);若f(c)0,则c就是函数的零点;若f(a)f(c)0,则令bc(此时零点x0(a,c)若f(c)f(b)0,则令ac(此时零点x0(c,b)(4)判断是否达到精确度:即若|ab|,则得到零点近似值a(或b);否则重复(2)(4)要点一二分法概念的理解例1下列图象与x轴均有交点,其中不能用二分法求函数零点的是()答案A解析按定义,f(x)在a,b上是连续的,且f(a)f(b)0,才能不断地把函数零点所在的区间一分为二,进而利用二分法求出函数的零点故结合各
3、图象可得选项B、C、D满足条件,而选项A不满足,在A中,图象经过零点x0时,函数值不变号,因此不能用二分法求解故选A.规律方法1.准确理解“二分法”的含义二分就是平均分成两部分二分法就是通过不断地将所选区间一分为二,逐步逼近零点的方法,找到零点附近足够小的区间,根据所要求的精确度,用此区间的某个数值近似地表示真正的零点2“二分法”与判定函数零点的定义密切相关,只有满足函数图象在零点附近连续且在该零点左右函数值异号才能应用“二分法”求函数零点跟踪演练1(1)下列函数中,能用二分法求零点的为()(2)用二分法求函数f(x)在区间a,b内的零点时,需要的条件是()f(x)在区间a,b是连续不断;f(
4、a)f(b)0;f(a)f(b)0;f(a)f(b)0.A B C D答案(1)B(2)A解析(1)函数图象连续不断,函数零点附近的函数值异号,这样的函数零点才能使用二分法求解,观察四个函数图象,只有B选项符合(2)由二分法的意义,知选A.要点二用二分法求方程的近似解例2用二分法求方程2x33x30的一个正实数近似解(精确度0.1)解令f(x)2x33x3,经计算,f(0)30,f(1)20,f(0)f(1)0,所以函数f(x)在(0,1)内存在零点,即方程2x33x3在(0,1)内有解取(0,1)的中点0.5,经计算f(0.5)0,又f(1)0,所以方程2x33x30在(0.5,1)内有解如
5、此继续下去,得到方程的正实数根所在的区间,如表:(a,b)中点cf(a)f(b)f()(0,1)0.5f(0)0f(1)0f(0.5)0(0.5,1)0.75f(0.5)0f(1)0f(0.75)0(0.5,0.75)0.625f(0.5)0f(0.75)0f(0.625)0(0.625,0.75)0.687 5f(0.625)0f(0.75)0f(0.687 5)0由于|0.687 50.75|0.062 50.1,所以方程2x33x30的一个精确度为0.1的正实数近似解可取为0.687 5.规律方法1.二分法求方程的近似解的过程可用下面的流程图表示:2求形如f(x)g(x)的方程的近似解,
6、可以通过移项转化成求F(x)f(x)g(x)的近似解问题跟踪演练2用二分法求2x x4在1,2内的近似解(精确度为0.2)参考数据:x1.1251.251.3751.51.6251.751.8752x2.182.382.592.833.083.363.67解令f(x)2xx4,则f(1)2140,f(2)22240.区间区间中点值xnf(xn)的值及符号(1,2)x11.5f(x1)0.330(1,1.5)x21.25f(x2)0.370(1.25,1.5)x31.375f(x3)0.0350(1.375,1.5)|1.3751.5|0.1250.2,2xx4在(1,2)内的近似解可取为1.3
7、75.1用二分法求函数f(x)x35的零点可以取的初始区间是()A2,1 B1,0 C0,1 D1,2答案A解析f(2)30,f(1)60,f(2)f(1)0,故可取2,1作为初始区间,用二分法逐次计算2定义在R上的函数f(x)的图象是连续不断的曲线,已知函数f(x)在区间(a,b)上有一个零点x0,且f(a)f(b)0,用二分法求x0时,当f0时,则函数f(x)的零点是()A(a,b)外的点BxC区间或内的任意一个实数Dxa或xb答案B解析由二分法的思想,采用二分法得到的零点可能是准确值,也可能是近似值由f0,知选B.3函数f(x)的图象是连续不断的曲线,在用二分法求方程f(x)0在(1,2
8、)内近似解的过程中得f(1)0,f(1.5)0,f(1.25)0,则方程的解所在区间为()A(1.25,1.5) B(1,1.25)C(1.5,2) D不能确定答案A解析由于f(1.25)f(1.5)0,则方程的解所在区间为(1.25,1.5)4函数f(x)log2x2x1的零点必落在区间()A. B. C. D(1,2)答案C解析f0,f0,f10,f(1)10,f(2)40,函数零点落在区间上5用二分法求方程x32x50在区间(2,3)内的实根,取区间中点为x02.5,那么下一个有根的区间是_答案(2,2.5)解析f(2)2322510,f(2.5)2.5322.555.6250,下一个有
9、根的区间是(2,2.5)1二分法就是通过不断地将所选区间一分为二,使区间的两个端点逐步逼近零点,直至找到零点附近足够小的区间,根据所要求的精确度,用此区间的某个数值近似地表示真正的零点2并非所有函数都可以用二分法求其零点,只有满足:(1)在区间a,b上连续不断;(2)f(a)f(b)0.上述两条的函数,方可采用二分法求得零点的近似值.一、基础达标1已知函数f(x)的图象如图,其中零点的个数及可以用二分法求解的个数分别为()A4,4 B3,4C5,4 D4,3答案D解析由图象知函数f(x)与x轴有4个交点,因此零点个数为4,从左往右数第4个交点两侧不满足f(a)f(b)0,因此不能用二分法求零点
10、,而其余3个均可使用二分法求零点2为了求函数f(x)2xx2的一个零点,某同学利用计算器,得到自变量x和函数值f(x)的部分对应值f(x)的值精确到0.01如下表如示:x0.61.01.41.82.22.63.0f(x)1.161.000.680.240.250.701.00则函数f(x)的一个零点所在的区间是()A(0.6,1.0) B(1.4,1.8)C(1.8,2.2) D(2.6,3.0)答案C解析f(1.8)f(2.2)0.24(0.25)0,零点在区间(1.8,2.2)上故选C.3用二分法研究函数f(x)x33x1的零点时,第一次经计算f(0)0,f(0.5)0,可得其中一个零点x
11、0_,第二次应计算_,以上横线上应填的内容为()A(0,0.5),f(0.25)B(0,1),f(0.25)C(0.5,1),f(0.75)D(0,0.5),f(0.125)答案A解析二分法要不断地取区间的中点值进行计算由f(0)0,f(0.5)0知x0(0,0.5)再计算0与0.5的中点0.25的函数值,以判断x0的更准确位置4设方程2x2x10的根为则属于()A(0,1) B(1,2)C(2,3) D(3,4)答案C解析设f(x)2x2x10,则f(x)在R上为单调增函数,故只有一个零点f(0)9,f(1)6,f(2)2,f(3)4,f(2)f(3)0.(2,3)5函数yx与函数ylg x
12、的图象的交点的横坐标(精确度0.1)约是()A1.5 B1.6C1.7 D1.8答案D解析设f(x)lg xx,经计算f(1)0,f(2)lg 20,所以方程lg xx0在1,2内有解应用二分法逐步缩小方程实数解所在的区间,可知选项D符合要求6用二分法求方程ln x2x0在区间1,2上零点的近似值,先取区间中点c,则下一个含根的区间是_答案解析令f(x)ln x2x,f(1)10,f(2)ln 20,fln 0,下一个含根的区间是.7用二分法求函数f(x)3xx4的一个零点,其参考数据如下:f(1.600 0)0.200f(1.587 5)0.133f(1.575 0)0.067f(1.562
13、 5)0.003f(1.556 2)0.029f(1.550 0)0.060据此数据,求f(x)3xx4的一个零点的近似值(精确度0.01)解由表中f(1.562 5)0.003,f(1.556 2)0.029.f(1.562 5)f(1.556 2)0.又|1.562 51.556 2|0.006 30.01,一个零点近似值为1.562 5(不唯一)二、能力提升8在用“二分法”求函数f(x)零点近似值时,第一次所取的区间是2,4,则第三次所取的区间可能是()A1,4 B2,1C. D.答案D解析由于第一次所取的区间为2,4,第二次所取区间为2,1或1,4,第三次所取区间为,或.9用二分法求方
14、程x380在区间(2,3)内的近似解经过_次“二分”后精确度能达到0.01?答案7解析设n次“二分”后精确度达到0.01,区间(2,3)的长度为1,100.注意到2664100.故要经过7次二分后精确度达到0.01.10已知图象连续不断的函数yf(x)在区间(0,0.1)上有唯一零点,如果用二分法求这个零点(精确度为0.01)的近似值,则应将区间(0,0.1)等分的次数至少为_答案4解析设等分的最少次数为n,则由0.01,得2n10,n的最小值为4.11画出函数f(x)x2x1的图象,并利用二分法说明方程x2x10在0,2内的根的情况解图象如图所示,因为f(0)10,f(2)10,所以方程x2
15、x10在(0,2)内有根x0;取(0,2)的中点1,因为f(1)10,所以f(1)f(2)0,根x0在区间(1,2)内;再取(1,2)的中点1.5,f(1.5)0.250,所以f(1.5)f(2)0,根x0在区间(1.5,2)内;取(1.5,2)的中点1.75,f(1.75)0.312 50,所以f(1.5)f(1.75)0,根x0在区间(1.5,1.75)内这样继续下去,可以得到满足一定精确度的方程的近似根三、探究与创新12求方程ln xx30在(2,3)内的近似解(精确度为0.1)解令f(x)ln xx3,求函数f(x)0在(2,3)内的零点f(2)ln 210,f(3)ln 30,取(2
16、,3)作为初始区间,用二分法列表如下:区间中点的值中点函数近似值(2,3)2.50.416(2,2.5)2.250.061(2,2.25)2.1250.121(2.125,2.25)2.187 50.0302.252.187 50.062 50.1,在区间(2.187 5,2.25)内任意实数都是函数的零点的近似值,即方程的近似解可取为2.25.13用二分法求的近似值(精确度0.1)解设x,则x25,即x250,令f(x)x25.因为f(2.2)0.160.f(2.4)0.760,所以f(2.2)f(2.4)0,说明这个函数在区间(2.2,2.4)内有零点x0,取区间(2.2,2.4)的中点x
17、12.3,则f(2.3)0.29.因为f(2.2)f(2.3)0,x0(2.2,2.3),再取区间(2.2,2.3)的中点x22.25,f(2.25)0.062 5.因为f(2.2)f(2.25)0,所以x0(2.2,2.25)由于|2.252.2|0.050.1,所以的近似值可取为2.25.下课啦,咱们来听个小故事吧:活动目的:教育学生懂得“水”这一宝贵资源对于我们来说是极为珍贵的,每个人都要保护它,做到节约每一滴水,造福子孙万代。活动过程:1.主持人上场,神秘地说:“我让大家猜个谜语,你们愿意吗?”大家回答:“愿意!”主持人口述谜语:“双手抓不起,一刀劈不开,煮饭和洗衣,都要请它来。”主持
18、人问:“谁知道这是什么?”生答:“水!”一生戴上水的头饰上场说:“我就是同学们猜到的水。听大家说,我的用处可大了,是真的吗?”主持人:我宣布:“水”是万物之源主题班会现在开始。 水说:“同学们,你们知道我有多重要吗?”齐答:“知道。”甲:如果没有水,我们人类就无法生存。小熊说:我们动物可喜欢你了,没有水我们会死掉的。花说:我们花草树木更喜欢和你做朋友,没有水,我们早就枯死了,就不能为美化环境做贡献了。主持人:下面请听快板水的用处真叫大竹板一敲来说话,水的用处真叫大;洗衣服,洗碗筷,洗脸洗手又洗脚,煮饭洗菜又沏茶,生活处处离不开它。栽小树,种庄稼,农民伯伯把它夸;鱼儿河马大对虾,日日夜夜不离它;
19、采煤发电要靠它,京城美化更要它。主持人:同学们,听完了这个快板,你们说水的用处大不大?甲说:看了他们的快板表演,我知道日常生活种离不了水。乙说:看了表演后,我知道水对庄稼、植物是非常重要的。丙说:我还知道水对美化城市起很大作用。2.主持人:水有这么多用处,你们该怎样做呢?(1)(生):我要节约用水,保护水源。(2)(生):我以前把水壶剩的水随便就到掉很不对,以后我一定把喝剩下的水倒在盆里洗手用。(3)(生):前几天,我看到了学校电视里转播的“水日谈水”的节目,很受教育,同学们看得可认真了,知道了我们北京是个缺水城市,我们再不能浪费水了。(4)(生):我要用洗脚水冲厕所。3.主持人:大家谈得都很
20、好,下面谁想出题考考大家,答对了请给点掌声。(1)(生):小明让爸爸刷车时把水龙头开小点,请回答对不对。(2)(生):小兰告诉奶奶把洗菜水别到掉,留冲厕所用。(3)一生跑上说:主持人请把手机借我用用好吗?我想现在就给姥姥打个电话,告诉她做饭时别把淘米水到掉了,用它冲厕所或浇花用。(电话内容略写)(4)一生说:主持人我们想给大家表演一个小品行吗?主持人:可以,大家欢迎!请看小品这又不是我家的大概意思是:学校男厕所便池堵了,水龙头又大开,水流满地。学生甲乙丙三人分别上厕所,看见后又皱眉又骂,但都没有关水管,嘴里还念念有词,又说:“反正不是我家的。”旁白:“那又是谁家的呢?”主持人:看完这个小品,你
21、们有什么想法吗?谁愿意给大家说说?甲:刚才三个同学太自私了,公家的水也是大家的,流掉了多可惜,应该把水龙头关上。乙:上次我去厕所看见水龙头没关就主动关上了。主持人:我们给他鼓鼓掌,今后你们发现水龙头没关会怎样做呢?齐:主动关好。小记者:同学们,你们好!我想打扰一下,听说你们正在开班会,我想采访一下,行吗?主持人:可以。小记者:这位同学,你好!通过参加今天的班会你有什么想法,请谈谈好吗?答:我要做节水的主人,不浪费一滴水。小记者:请这位同学谈谈好吗?答:今天参加班会我知道了节约每一滴水要从我们每个人做起。我想把每个厕所都贴上“节约用水”的字条,这样就可以提醒同学们节约用水了。小记者:你们谈得很好
22、,我的收获也很大。我还有新任务先走了,同学们再见!水跑上来说:同学们,今天我很高兴,我“水伯伯”今天很开心,你们知道了有了我就有了生命的源泉,请你们今后一定节约用水呀!让人类和动物、植物共存,迎接美好的明天!主持人:你们还有发言的吗?答:有。生:我代表人们谢谢你,水伯伯,节约用水就等于保护我们人类自己。动物:小熊上场说:我代表动物家族谢谢你了,我们也会保护你的!花草树木跑上场说:我们也不会忘记你的贡献!水伯伯:(手舞足蹈地跳起了舞蹈)同学们的笑声不断。主持人:水伯伯,您这是干什么呢?水伯伯:因为我太高兴了,今后还请你们多关照我呀!主持人:水伯伯,请放心,今后我们一定会做得更好!再见!4.主持人
23、:大家欢迎老师讲话!同学们,今天我们召开的班会非常生动,非常有意义。水是生命之源,无比珍贵,愿同学们能加倍珍惜它,做到节约一滴水,造福子孙后代。5.主持人宣布:“水”是万物之源主题班会到此结束。 6.活动效果: 此次活动使学生明白了节约用水的道理,浪费水的现象减少了,宣传节约用水的人增多了,人人争做节水小标兵活动目的:教育学生懂得“水”这一宝贵资源对于我们来说是极为珍贵的,每个人都要保护它,做到节约每一滴水,造福子孙万代。活动过程:1.主持人上场,神秘地说:“我让大家猜个谜语,你们愿意吗?”大家回答:“愿意!”主持人口述谜语:“双手抓不起,一刀劈不开,煮饭和洗衣,都要请它来。”主持人问:“谁知
24、道这是什么?”生答:“水!”一生戴上水的头饰上场说:“我就是同学们猜到的水。听大家说,我的用处可大了,是真的吗?”主持人:我宣布:“水”是万物之源主题班会现在开始。 水说:“同学们,你们知道我有多重要吗?”齐答:“知道。”甲:如果没有水,我们人类就无法生存。小熊说:我们动物可喜欢你了,没有水我们会死掉的。花说:我们花草树木更喜欢和你做朋友,没有水,我们早就枯死了,就不能为美化环境做贡献了。主持人:下面请听快板水的用处真叫大竹板一敲来说话,水的用处真叫大;洗衣服,洗碗筷,洗脸洗手又洗脚,煮饭洗菜又沏茶,生活处处离不开它。栽小树,种庄稼,农民伯伯把它夸;鱼儿河马大对虾,日日夜夜不离它;采煤发电要靠
25、它,京城美化更要它。主持人:同学们,听完了这个快板,你们说水的用处大不大?甲说:看了他们的快板表演,我知道日常生活种离不了水。乙说:看了表演后,我知道水对庄稼、植物是非常重要的。丙说:我还知道水对美化城市起很大作用。2.主持人:水有这么多用处,你们该怎样做呢?(1)(生):我要节约用水,保护水源。(2)(生):我以前把水壶剩的水随便就到掉很不对,以后我一定把喝剩下的水倒在盆里洗手用。(3)(生):前几天,我看到了学校电视里转播的“水日谈水”的节目,很受教育,同学们看得可认真了,知道了我们北京是个缺水城市,我们再不能浪费水了。(4)(生):我要用洗脚水冲厕所。3.主持人:大家谈得都很好,下面谁想
26、出题考考大家,答对了请给点掌声。(1)(生):小明让爸爸刷车时把水龙头开小点,请回答对不对。(2)(生):小兰告诉奶奶把洗菜水别到掉,留冲厕所用。(3)一生跑上说:主持人请把手机借我用用好吗?我想现在就给姥姥打个电话,告诉她做饭时别把淘米水到掉了,用它冲厕所或浇花用。(电话内容略写)(4)一生说:主持人我们想给大家表演一个小品行吗?主持人:可以,大家欢迎!请看小品这又不是我家的大概意思是:学校男厕所便池堵了,水龙头又大开,水流满地。学生甲乙丙三人分别上厕所,看见后又皱眉又骂,但都没有关水管,嘴里还念念有词,又说:“反正不是我家的。”旁白:“那又是谁家的呢?”主持人:看完这个小品,你们有什么想法吗?谁愿意给大家说说?