难点解析北师大版八年级数学下册第三章图形的平移与旋转重点解析练习题(含详解).docx

上传人:知****量 文档编号:28228071 上传时间:2022-07-26 格式:DOCX 页数:23 大小:1.27MB
返回 下载 相关 举报
难点解析北师大版八年级数学下册第三章图形的平移与旋转重点解析练习题(含详解).docx_第1页
第1页 / 共23页
难点解析北师大版八年级数学下册第三章图形的平移与旋转重点解析练习题(含详解).docx_第2页
第2页 / 共23页
点击查看更多>>
资源描述

《难点解析北师大版八年级数学下册第三章图形的平移与旋转重点解析练习题(含详解).docx》由会员分享,可在线阅读,更多相关《难点解析北师大版八年级数学下册第三章图形的平移与旋转重点解析练习题(含详解).docx(23页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。

1、八年级数学下册第三章图形的平移与旋转重点解析 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、下列图形中,是中心对称图形但不是轴对称图形的是()ABCD2、古典园林中的窗户是中国传统建筑装饰的重要组成部分,

2、一窗一姿容,一窗一景致下列窗户图案中,是中心对称图形的是( )ABCD3、如图,将绕点按顺时针旋转一定角度得到,点的对应点点恰好落在边上,若,则的长为( )A3B2CD14、下列图形中,既是轴对称图形又是中心对称图形的是()ABCD5、下列图形既是轴对称图形又是中心对称图形的是()ABCD6、下列图形中,是中心对称图形的是( )ABCD7、下列图形中不是中心对称图形的是( )ABCD8、在平面直角坐标系中,将点(3,-4)平移到点(-1,4),经过的平移变换为( )A先向左平移4个单位长度,再向上平移4个单位长度B先向左平移4个单位长度,再向上平移8个单位长度C先向右平移4个单位长度,再向下平

3、移4个单位长度D先向右平移4个单位长度,再向下平移8个单位长度9、 “垃圾分类,利国利民”,在2019年7月1日起上海开始正式实施垃圾分类,到2020年底先行先试的46个重点城市,要基本建成垃圾分类处理系统以下四类垃圾分类标志的图形,其中既是轴对称图形又是中心对称图形的是( )A可回收物B有害垃圾C厨余垃圾D其他垃圾10、直角坐标系中,点A(-3,4)与点B(3,-4)关于( )A原点中心对称B轴轴对称C轴轴对称D以上都不对第卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、如图,线段AB按一定的方向平移到线段CD,点A平移到点C,若AB=6cm,四边形ABDC的周长为28

4、cm,则BD=_cm2、已知矩形ABCD中,AD5,AB3,现将边AD绕它的一个端点旋转,当另一端点怡好落在边BC所在直线的点E处时,线段DE的长度为 _3、如图所示,在ABC中,B40,将ABC绕点A逆时针旋转至ADE的位置,则ADE_4、如图,将边长为的等边向右平移,得到,此时阴影部分的周长为_5、在平面直角坐标系中,将点P(3,1)向上平移5个单位长度到点M,则点M关于原点对称的点的坐标是 _三、解答题(5小题,每小题10分,共计50分)1、如图,点O为上一点,过点O作射线,使,将一个含的直角三角板的一个顶点放在O处,斜边与直线重合,另外两条直角边都在直线的下方(1)将图1中的三角板绕着

5、O逆时针旋转,如图2所示,此时 (2)接着将图2中的三角形绕点O逆时针继续旋转到图3的位置所示,使在的内部,请探究:与的数量关系,并说明理由;(3)将图1中的三角板绕点O按每秒的速度沿逆时针方向旋转一周,在旋转过程中,旋转到多少秒时,2、如图,在平面直角坐标系中,ABC的顶点坐标为A(1,1),B(3,2),C(2,4)(1)在图中作出ABC向右平移4个单位,再向下平移5个单位得到的A1B1C1;(2)在图中作出A1B1C1关于y轴对称的A2B2C2;(3)经过上述平移变换和轴对称变换后,ABC内部的任意一点P(a,b)在A2B2C2内部的对应点P2的坐标为 3、如图,将两个相同三角板的两个直

6、角顶点O重合在一起,如图放置(1)如图,若BOC60,求AOD的度数;(2)如图,若BOC70,求AOD的度数;(3)把三角形AOB绕着点O旋转,猜想在旋转过程中AOD和BOC存在着什么关系4、如图在的正方形网格中,每个小正方形的顶点称为格点点A,点B都在格点上,按下列要求画图(1)在图中,AB为一边画,使点C在格点上,且是轴对称图形;(2)在图中,AB为一腰画等腰三角形,使点C在格点上;(3)在图中,AB为底边画等腰三角形,使点C在格点上5、如图,在66的方格纸中,每个小正方形的顶点称为格点,每个小正方形的边长均为1,A,B两点均在格点上请按要求在图,图,图中画图:(1)在图中,画等腰ABC

7、,使AB为腰,点C在格点上(2)在图中,画面积为8的四边形ABCD,使其为中心对称图形,但不是轴对称图形,C,D两点均在格点上(3)在图中,画ABC,使ACB=90,面积为5,点C在格点上-参考答案-一、单选题1、B【分析】根据轴对称图形和中心对称图形的概念,对各选项分析判断即可得解把一个图形绕某一点旋转180,如果旋转后的图形能够与原来的图形重合,那么这个图形就叫做中心对称图形;如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形【详解】解:A既是轴对称图形,又是中心对称图形,故本选项不符合题意;B不是轴对称图形,是中心对称图形,故本选项符合题意;C既是轴对称图形,

8、又是中心对称图形,故本选项不符合题意;D是轴对称图形,不是中心对称图形,故本选项不符合题意故选:B【点睛】本题考查了中心对称图形与轴对称图形的概念,轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后与原图重合2、C【分析】根据中心对称图形的定义进行逐一判断即可【详解】解:A、不是中心对称图形,故此选项不符合题意;B、不是中心对称图形,故此选项不符合题意;C、是中心对称图形,故此选项符合题意;D、不是中心对称图形,故此选项不符合题意;故选C【点睛】本题主要考查了中心对称图形的识别,解题的关键在于能够熟练掌握中心对称图形的定义:把一个图形绕着某一个点

9、旋转180,如果旋转后的图形能够与原来的图形重合,那么这个图形叫做中心对称图形,这个点就是它的对称中心3、B【分析】由直角三角形的性质可得AB2,BC2AB4,由旋转的性质可得ADAB,可证ADB是等边三角形,可得BDAB2,即可求解【详解】解:,BAC90C=90-BC2ABBC2=AC2+AB2AB2,BC2AB4,RtABC绕点A按顺时针旋转一定角度得到RtADE,ADAB,且B60ADB是等边三角形BDAB2,CDBCBD422故选:B【点睛】本题考查了旋转的性质,等边三角形的判定和性质,直角三角形的性质,熟练运用旋转的性质是本题的关键4、D【分析】根据轴对称图形与中心对称图形的概念求

10、解即可【详解】解:A是轴对称图形,不是中心对称图形,故此选项不合题意;B是轴对称图形,不是中心对称图形,故此选项不合题意;C是轴对称图形,不是中心对称图形,故此选项符合题意;D是轴对称图形,也是中心对称图形,故此选项不合题意故选D【点睛】此题主要考查了中心对称图形与轴对称图形的概念:轴对称图形:如果一个图形沿着一条直线对折后两部分完全重合,这样的图形叫做轴对称图形;中心对称图形:在同一平面内,如果把一个图形绕某一点旋转180,旋转后的图形能和原图形完全重合,那么这个图形就叫做中心对称图形5、B【分析】根据轴对称图形与中心对称图形的概念求解【详解】解:A不是中心对称图形,也不是轴对称图形,故此选

11、项不合题意;B是轴对称图形,也是中心对称图形,故此选项符合题意;C是轴对称图形,不是中心对称图形,故此选项不合题意;D不是轴对称图形,是中心对称图形,故此选项不合题意故选:B【点睛】此题主要考查了中心对称图形与轴对称图形的概念:轴对称图形:如果一个图形沿着一条直线对折后两部分完全重合,这样的图形叫做轴对称图形;中心对称图形:在同一平面内,如果把一个图形绕某一点旋转180,旋转后的图形能和原图形完全重合,那么这个图形就叫做中心对称图形6、C【分析】根据中心对称图形的概念:一个平面图形绕某一点旋转180,如果旋转后的图形能够和原图形重合,那么这个图形叫做中心对称图形,这个点就是对称中心. 根据中心

12、对称图形的概念对各选项进行一一分析判定即可求解【详解】A、不是中心对称图形,不符合题意;B、不是中心对称图形,不符合题意;C、是中心对称图形,符合题意;D、不是中心对称图形,不符合题意故选:C【点睛】本题考查了中心对称图形,掌握好中心对称图形,中心对称图形是要寻找对称中心,旋转180度后能够与原来的图形重合7、B【分析】根据中心对称图形的概念求解【详解】解:A、是中心对称图形,故本选项不合题意;B、不是中心对称图形,故本选项符合题意;C、是中心对称图形,故本选项不合题意;D、是中心对称图形,故本选项不合题意故选:B【点睛】本题考查了中心对称图形的知识,把一个图形绕某一点旋转180,如果旋转后的

13、图形能够与原来的图形重合,那么这个图形就叫做中心对称图形8、B【分析】利用平移中点的变化规律求解即可【详解】解:在平面直角坐标系中,点(3,-4)的坐标变为(-1,4),点的横坐标减少4,纵坐标增加8,先向左平移4个单位长度,再向上平移8个单位长度故选:B【点睛】本题考查了坐标与图形变化-平移:在平面直角坐标系内,把一个图形各个点的横坐标都加上(或减去)一个整数a,相应的新图形就是把原图形向右(或向左)平移a个单位长度;如果把它各个点的纵坐标都加(或减去)一个整数a,相应的新图形就是把原图形向上(或向下)平移a个单位长度9、B【分析】由题意根据轴对称图形和中心对称图形的定义对各选项进行判断,即

14、可得出答案【详解】解:A、是轴对称图形,不是中心对称图形,故此选项不合题意;B、既是轴对称图形,也是中心对称图形,故此选项符合题意;C、是轴对称图形,不是中心对称图形,故此选项不合题意;D、既不是轴对称图形,也不是中心对称图形,故此选项不符合题意;故选:B.【点睛】本题考查中心对称图形与轴对称图形的概念,注意掌握判断轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合;判断中心对称图形是要寻找对称中心,旋转180度后与原图重合10、A【分析】观察点A与点B的坐标,依据关于原点中心对称的点,横坐标与纵坐标都互为相反数可得答案【详解】根据题意,易得点(-3,4)与(3,-4)的横、纵坐标互为相反数

15、,则这两点关于原点中心对称故选A【点睛】本题考查在平面直角坐标系中,关于原点中心对称的两点的坐标之间的关系掌握关于原点对称的点,横坐标与纵坐标都互为相反数是解答本题的关键二、填空题1、8【分析】图形平移后,AB平移到线段CD,点A平移到点C,则A和C是对应点,B和D是对应点,可得AB+BD=14,最后得出结果【详解】解:图形平移后,对应点连成的线段平行且相等,AB平移到线段CD,点A平移到点C,则A和C是对应点,B和D是对应点,AC=BD,AB=CDAC+BD+AB+CD=2AB+2BD=28,AB+BD=14,AB=6cm,BD=14-6=8cm,故答案为:8【点睛】根据平移的性质,图形平移

16、后,对应点连成的线段平行且相等,求出结果2、2或3或5【分析】分两种情形:AD=AE,DE=DA,利用勾股定理分别求解即可【详解】解:如图,四边形ABCD是矩形,AB=CD=3,AD=BC=5,ABC=DCB=90,当AD=5时,=4,DE1=2,=24+1=9,DE2=3,当DE=DA=5时,DE=5,综上所述,满足条件的DE的值为2或3或5故答案为:2或3或5【点睛】本题考查了旋转变换,矩形的性质,等腰三角形的性质,勾股定理等知识,解题的关键是学会用分类讨论的思想思考问题,属于中考常考题型3、4040度【分析】根据ABC绕点A逆时针旋转至ADE,得到ABCADE,即可得到ADEB40,问题

17、得解【详解】解:ABC绕点A逆时针旋转至ADE,ABCADE,ADEB40故答案为:40【点睛】本题考查了图形旋转的性质,熟知旋转前后的两个图形全等是解题关键4、12【分析】先确定平移距离,从而确定阴影等边三角形的边长,计算周长即可【详解】为等边三角形,等边向右平移得到,阴影部分为等边三角形,阴影部分的周长为故答案为:【点睛】本题考查了等边三角形的性质和判定,平移的性质,熟练掌握平移的性质,等边三角形的性质是解题的关键5、【分析】根据点的平移规律,可得平移后的点,根据关于原点对称的点的横、纵坐标都互为相反数,可得答案【详解】将点向上平移5个单位长度得到点,点M关于原点对称的点的坐标是,故答案为

18、:【点睛】本题考查了平移与坐标变换,利用关于原点对称的点的横、纵坐标都互为相反数是解题关键三、解答题1、(1)90;(2)+=135,理由见解析 (3)15或55秒【分析】(1)利用旋转的性质可得DON的度数,根据平角的性质即可求解;(2)利用NOM45与COD=180即可可判断与的数量关系;(3)在旋转的过程中,COM与CON互补,可求出ON旋转67.5或247.5,即可得出结果【详解】解:(1),DOB=45COD=180旋转90DON=90180-DON=90故答案为:90;(2)+=135,理由如下:NOM45,COD=180+=COD-NOM=135即+=135;(3)当OM、ON都

19、在OC右侧时,COMCON2COM45180, COM67.5,故旋转的度数BOM=BOC-COM67.5时间为:67.54.515s;当OM、ON都在OC左侧,COMCON2CON45180,CON67.5,旋转的度数为COD+CON247.5时间为:247.54.555,故旋转到15或55秒时,【点睛】本题考查了等腰直角三角形的性质、角度的和差关系、旋转的性质等知识,熟练掌握三角板的特点以及旋转的性质是解题的关键2、(1)见解析;(2)见解析;(3)(a4,b5)【分析】(1)利用平移变换的性质分别作出A,B,C 的对应点A1,B1,C1即可;(2)利用轴对称变换的性质分别作出A1,B1,

20、C1的对应点A2,B2,C2即可;(3)利用平移变换的性质,轴对称变换的性质解决问题即可【详解】解:(1)如图,A1B1C1即为所求;(2)如图,A2B2C2即为所求;(3)由题意得:P(a4,b5)故答案为:(a4,b5);【点睛】本题考查作图轴对称变换,平移变换的性质等知识,解题的关键是掌握轴对称的性质,平移变换的性质,属于中考常考题型3、(1)120;(2)110;(3)AOD+BOC=180【分析】(1)由题意根据图形利用旋转对应角相等,并通过AODAOC+BOC+BOD计算可得答案;(2)根据题意由AOD+BOC=360-AOB-COD,进而即可求得AOD的度数;(3)由题意根据图形

21、可得AOC=90-BOC,BOD=90-BOC,分析可得答案【详解】解:(1)BOC60AOC90-60=30BOD90-60=30AODAOC+BOC+BOD30+60+30=120(2)AOD+BOC=90+90=180AOD=180-BOC=180-70=110(3)猜想:AOD+BOC=180理由如下:如图AOD=AOC+COD=AOC+90,BOC=COD-BOD=90-BOD,AOC=BOD,AOD+BOC=180;如图,AOB+COD+BOC+AOD=360,AOB=90,COD=90,AOD+BOC=360-90-90=180【点睛】本题考查三角板的特征和旋转的性质以及三角形内

22、角和定理,注意掌握数形结合思想的应用4、(1)见详解;(2)见详解;(3)见详解【分析】(1)先根据以AB为边ABC是轴对称图形,得出ABC为等腰三角形,AB长为3,画以AB为腰的等腰直角三角形即可;(2)先根据勾股定理求出AB的长,利用平移画出点C即可;(3)先求出以AB为底等腰直角三角形腰长AC=,利用平移作出点C即可【详解】解:(1)以AB为边ABC是轴对称图形,ABC为等腰三角形,AB长为3,画以AB为直角边,点B为直角顶点ABC如图也可画以AB为直角边,点A为直角顶点ABC如图;(2)根据勾股定理AB=,AB为一腰画等腰三角形,另一腰为,以点A为顶角顶点根据勾股定理构建横1竖3,或横

23、3竖1;点A向左1格再向下平移3格得C1,连结AC1,C1B,得等腰ABC1,点A向右3格再向上平移1格得C2,连结AC2,BC2,得等腰ABC2,点A向右3格再向下平移1格得C3,连结AC3,BC3,得等腰ABC3, 点B向右3格再向上平移1格得C4,连结AC4,BC4,得等腰ABC4,点B向右3格再向下平移1格得C5,连结AC5,BC5,得等腰ABC5,点B向右1格再向上平移3格得C6,连结AC6,BC6,得等腰ABC6; (3)AB为底边画等腰三角形,等腰直角三角形腰长为m,根据勾股定理,即,解得,根据勾股定理AC=,横1竖2,或横2竖1得图形,点A向右平移2格,再向下平移1格得点C1,

24、连结AC1,BC1,得等腰三角形ABC1,点A向左平移1格,再向下平移2格得点C2,连结AC2,BC2,得等腰三角形ABC2【点睛】本题考查网格作图,图形平移性质,勾股定理应用,等腰直角三角形性质,轴对称性质,掌握网格作图,图形平移性质,勾股定理应用,等腰直角三角形性质,轴对称性质是解题关键5、(1)见解析;(2)见解析;(3)见解析【分析】(1)因为AB=5,作腰为5的等腰三角形即可(答案不唯一);(2)作边长为2,高为4的平行四边形即可;(3)根据(1)的结论,作BG边的中线,即可得解【详解】解:(1)如图中,ABC即为所求作(答案不唯一);(2)如图中,平行四边形ABCD即为所求作;(3)如图中,ABC即为所求作(答案不唯一);AB=AG,BC=CG,ACBG,ABG的面积为,ABC的面积为5,且ACB=90【点睛】本题考查作图-应用与设计,等腰三角形的判定和性质,勾股定理及其逆定理等知识,解题的关键是理解题意,灵活运用所学知识解决问题

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 应用文书 > 策划方案

本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

工信部备案号:黑ICP备15003705号© 2020-2023 www.taowenge.com 淘文阁