《难点详解京改版八年级数学下册第十六章一元二次方程专项练习试卷(精选).docx》由会员分享,可在线阅读,更多相关《难点详解京改版八年级数学下册第十六章一元二次方程专项练习试卷(精选).docx(16页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、京改版八年级数学下册第十六章一元二次方程专项练习 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、已知一个直角三角形的两边长是方程的两个根,则这个直角三角形的斜边长为( )A3BC3或D5或2、下列一元二次
2、方程两实数根和为-4的是( )ABCD3、一元二次方程根的情况是( )A有两个不相等的实数根B有两个相等的实数根C没有实数根D无法判断4、若一元二次方程有一个根为1,则下列等式成立的是( )ABCD5、把长为2 m的绳子分成两段,使较长一段的长的平方等于较短一段的长与原绳长的积设较长一段的长为x m,依题意,可列方程为( )ABCD6、一元二次方程的解是( )A5B2C5或2D5或27、若关于x的一元二次方程的一根为1,则k的值为( ) A1BCD08、下列方程中,是一元二次方程的个数有()(1)x22x10;(2)20;(3)x22x10;(4)(a1)x2bxc0;(5)x2x4x2A2个
3、B3个C4个D5个9、下列方程是一元二次方程的是( )ABCD10、下列方程中是一元二次方程的是()A2x+10By2+x1Cx2+10D第卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、若关于x的一元二次方程的一个根是m,则的值为_2、若,则关于的一元二次方程必有一个根为_3、关于的一元二次方程的一个根是,则方程的另一根是_4、定义运算:mnmn2mn2例如:424224226若1x0,则x_5、已知,那么的值是_三、解答题(5小题,每小题10分,共计50分)1、某地区2019年投入教育经费2500万元,2021年投入教育经费3025万元求2019年至2021年该地区投
4、入教育经费的年平均增长率2、我们知道,整式,分式,二次根式等都是代数式,代数式是用基本运算符号连接起来的式子,而当被除数是一个二次根式,除数是一个整式时,求得的商就会出现类似这样的形式,我们称形如这种形式的式子称为根分式,例如,都是根分式(1)请根据以上信息,写出一个取值范围是x2的根分式: ;(2)已知两个根分式M与N是否存在x的值使得N2M21,若存在,请求出x的值,若不存在,请说明理由;当M2+N2是一个整数时,写出两个满足条件的无理数x的值3、已知关于x的一元二次方程xmxm10有两个实数根x1,x2(1)求m的取值范围;(2)当x12x226x1x21时,求m的值4、如图,在一块长、
5、宽的矩形地面内,修筑一横两竖三条道路,横、竖道路的宽度相同,余下的地面铺草坪,要使草坪面积达到,求道路的宽5、已知关于x的一元二次方程(1)求证:方程总有两个实数根;(2)若方程的两个根都是正整数,求a的最小值-参考答案-一、单选题1、D【分析】利用因式分解法求出一元二次方程的两根,按斜边是否是两根中的一个,进行分类讨论,通过勾股定理求斜边长,最后即可求出答案【详解】解:,因式分解得:,解得:,情况1:当为斜边的长时,此时斜边长为5,情况2:当,都为直角边长时,此时斜边长为,这个直角三角形的斜边长为5或,故选:D【点睛】本题主要是考查了因式分解法求解方程,以及勾股定理求边长,在不确定直角边和斜
6、边的情况下,一定要分类讨论,分情况进行求解2、D【分析】根据根的判别式判断一元二次方程根的情况,再根据根与系数的关系求解即可【详解】解:A. ,不符合题意;B. ,该方程无实根,不符合题意;C. ,该方程无实根,不符合题意;D. ,该方程有实根,且,符合题意;故选D【点睛】本题考查了一元二次方程根与系数的关系,掌握根与系数的关系以及使用的前提条件是一元二次方程有实根,掌握一元二次方程根与系数的关系和根的判别式是解题的关键3、A【分析】计算出判别式的值,根据判别式的值即可判断方程的根的情况【详解】,方程有有两个不相等的实数根故选:A【点睛】本题考查了一元二次方程根的判别式,根据判别式的值的情况可
7、以判断方程有无实数根4、D【分析】将代入方程即可得出答案【详解】解:由题意,将代入方程得:,故选:D【点睛】本题考查了一元二次方程的根,熟记一元二次方程的根的定义(使方程左、右两边相等的未知数的值就是这个一元二次方程的解,也叫做一元二次方程的根)是解题关键5、A【分析】由题意依据较长一段的长的平方等于较短一段的长与原绳长的积建立方程即可得出答案.【详解】解:设较长一段的长为x m,则较短一段的长为(2-x )m,由题意得:.故选:A.【点睛】本题考查一元二次方程的实际运用,根据题意找出题目蕴含的数量关系是解决问题的关键6、D【分析】直接把原方程化为两个一次方程或,再解一次方程即可.【详解】解:
8、 或 解得: 故选D【点睛】本题考查的是利用因式分解法解一元二次方程,掌握“因式分解法解一元二次方程的步骤”是解本题的关键.7、B【分析】把方程的根代入方程可以求出k的值【详解】解:把1代入方程有:1+2k+1=0,解得:k=-1,故选:B【点睛】本题考查的是一元二次方程的解,正确理解题意是解题的关键8、B【分析】根据一元二次方程的定义(只含有一个未知数,且未知数的最高次数为二次的整式方程,且二次项系数不为0)依次进行判断即可【详解】解:(1)是一元二次方程; (2)不是一元二次方程;(3)是一元二次方程;(4),的值不确定,不是一元二次方程;(5)是一元二次方程,共3个,故选:B【点睛】题目
9、主要考查一元二次方的定义,深刻理解这个定义是解题关键9、C【分析】判断一个方程是否是一元二次方程,首先要看是否是整式方程,然后看化简后是否是只含有一个未知数且未知数的最高次数是2【详解】A.有两个未知数,错误;B.不是整式方程,错误;C.符合条件;D.化简以后为,不是二次,错误;故选:C【点睛】本题考查一元二次方程的定义根据一元二次方程的定义,一元二次方程有三个特点:(1)只含有一个未知数;(2)未知数的最高次数是2;(3)是整式方程10、C【详解】解:A、未知数次数是1,不是一元二次方程,故本选项不符合题意;B、含有2个未知数,不是一元二次方程,故本选项不符合题意;C、是一元二次方程,故本选
10、项符合题意;D、分母中含有未知数,不是一元二次方程,故本选项不符合题意;故选:C【点睛】本题主要考查了一元二次方程的定义,熟练掌握含有1个未知数,且未知数的最高次数为2的整式方程是一元二次方程是解题的关键二、填空题1、-2011【分析】由关于x的一元二次方程的一个根是m,可得,再由求解即可【详解】解:关于x的一元二次方程的一个根是m,故答案为:-2011【点睛】本题考查一元二次方程的解和代数式求值,解题的关键是正确理解一元二次方程的解的定义,本题属于基础题型2、【分析】由ab+c=0可得b=a+c,然后将b=a+c带入方程,最后用因式分解法解一元二次方程即可【详解】解:ab+c=0,b=a+c
11、,把代入方程ax2+bx+c=0中,ax2+(a+c)x+c=0,ax2+ax+cx+c=0,ax(x+1)+c(x+1)=0,(x+1)(ax+c)=0,x1=1,x2=(非零实数a、b、c)故答案是:-1【点睛】本题主要考查了解一元二次方程,灵活运用因式分解法解一元二次方程成为解答本题的关键3、【分析】设另一根为,根据一元二次方程根与系数的关系,可得 ,由,解一元一次方程即可求得方程的另一根【详解】解:关于的一元二次方程的一个根是,设另一根为,故答案为:【点睛】本题考查了一元二次方程根与系数的关系,掌握是解题的关键4、2或1【分析】根据题目中的新定于,可以将1x0转化为一元二次方程,然后求
12、解即可【详解】解:mnmn2mn2,1x0,x2x20,(x2)(x+1)0,解得x12,x21,故答案为:2或1【点睛】本题考查了一元二次方程的应用,解题的关键是列出相应的方程,会用新定义解答问题5、-5【分析】先利用配方法把所求的代数式配方,然后代值计算即可【详解】解:, ,故答案为:-5【点睛】本题主要考查了配方法的使用和代数式求值,解题的关键在于能够熟练掌握配方法三、解答题1、这两年投入教育经费的年平均增长率为【分析】根据等量关系:2019年投入教育经费(1+x)2=2021年投入教育经费列方程求解即可【详解】解:设2019年至2021年该地区投入教育经费的年平均增长率为,根据题意,得
13、,解得:,或(不合题意舍去),答:这两年投入教育经费的年平均增长率为【点睛】本题考查一元二次方程的应用,理解题意,正确列出方程是解答的关键2、(1);(2)不存在,见解析;,(答案不唯一)【分析】(1)依照根分式的定义写一个即可;(2)根据建立关于x的等式,即可求出x的值,注意需要判断x的值是否使根分式有意义;表达,分离整式,再判断什么时候为整数,求出x的值【详解】(1)由题意得:故答案是:x-2x-2;(2),解得:,检验,当时,原分式方程无解,从而不存在x的值使得;,当是一个整数时,可以取1或2,等,当x是无理数时,或,解得:,解得:,(答案不唯一)【点睛】本题考查求解一元二次方程,分式与
14、二次根式的应用,掌握题目给出的新定义是解题的关键3、(1)一切实数;(2)7或1【分析】(1)根据判别式的意义得到(m2)20,然后解不等式即可;(2)根据根与系数的关系得到得x1x2m,x1x2m1,利用x12x226x1x21,得到22(m1)6(m1)+1,然后解m的方程可得到满足条件的m的值【详解】解:(1)根据题意得(m)24(m1)0,(m2)20,m取一切实数;(2)根据题意得x1x2m,x1x2m1,x12x226x1x21,(x1x2)22x1x26x1x21,即m22(m1)6(m1)+1,解得m7或m1,m的值为7或1【点睛】本题考查了根与系数的关系以及根的判别式,解答本
15、题的关键是掌握两根之和与两根之积的表达方式4、道路的宽为2m【分析】设道路的宽为xm,根据图形可以把草坪面积看做是一个长为m,宽为m的长方形面积,由此建立方程求解即可【详解】解:设道路的宽为xm,由题意得:,解得或(舍去),道路的宽为2m【点睛】本题主要考查了一元二次方程的应用,解题的关键在于能够根据题意列出方程求解5、(1)证明见详解;(2)a的最小值为0【分析】(1)根据一元二次方程根的个数情况与根的判别式关系可以证出方程总有两个实数根;(2)根据题意利用十字相乘法解方程,求得,再根据题意两个根都是正整数,从而可以确定a的取值范围,即可求出a的最小值【详解】(1)证明:依题意得: , , 方程总有两个实数根;(2)由,可化为: 得 , 方程的两个实数根都是正整数, a的最小值为0【点睛】本题主要考查了一元二次方程根的判别式与根的个数关系和利用十字相乘法解含参数的方程,熟知根的判别式大于零方程有两个不相等的实数根,判别式等于零有两个相等的实数根或只有一个实数根,判别式小于零无根和十字相乘法的法则是解题关键