《难点详解北师大版八年级数学下册第五章分式与分式方程章节训练试题(无超纲).docx》由会员分享,可在线阅读,更多相关《难点详解北师大版八年级数学下册第五章分式与分式方程章节训练试题(无超纲).docx(17页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、北师大版八年级数学下册第五章分式与分式方程章节训练 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、PM2.5是大气中直径小于的颗粒物,将0.0000025用科学记数法表示为( )ABCD2、下列计算正确的
2、是( )ABCD3、北斗三号系统产生的时间基准可达到300万年误差1秒,创造了卫星授时的“中国精度”北斗卫星授时精度为,这个精度以s为单位表示为( )ABCD4、若关于x的方程的解大于0,则a的取值范围是( )ABCD5、某种微粒的直径为0.0000058米,那么该微粒的直径用科学记数法可以表示为( )A0.58106B5.8106C58105D5.81056、科学家借助电子显微镜发现新型冠状病毒的平均直径约为0.000000125米,则数据0.000000125用科学记数法表示正确的是()A1.25108B1.25108C1.25107D1.251077、下列各式中,是分式的是( )ABCD
3、8、关于x的方程的解为整数且关于x的不等式组的解集为则满足条件的所有整数a值之和为( )A5B3C4D09、某单位向一所希望小学赠送1080本课外书,现用A、B两种不同的包装箱进行包装,单独使用B型包装箱比单独使用A型包装箱可少用6个;已知每个B型包装箱比每个A型包装箱可多装15本课外书若设每个A型包装箱可以装书x本,则根据题意列得方程为()ABCD10、在代数式,中,分式的个数为( )A2B3C4D5第卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、计算:_2、计算:_3、将数用科学记数法表示为_4、按图所示的流程,若输出的A= -2,则输入的 的值为 _5、世界上最小
4、的开花结果植物是澳大利亚的出水浮萍,这种植物的果实像一个微小的无花果,质量只有0.000000076克,0.000000076用科学记数法表示是_三、解答题(5小题,每小题10分,共计50分)1、在分式中,若M,N为整式,分母M的次数为a,分子N的次数为b(当N为常数时,),则称分式为次分式例如,为三次分式(1)请写出一个只含有字母的二次分式_;(2)已知,(其中m,n为常数)若,则,中,化简后是二次分式的为_;若A与B的和化简后是一次分式,且分母的次数为1,求的值2、解方程:3、计算:4、为了庆祝中国共产党成立100周年,某灯笼厂接到制作1800件灯笼订单,为了尽快完成任务,该厂实际每天制作
5、的件数是原来的1.5倍,结果提前15天完成任务原来每天制作多少件?5、(1);(2)计算:;(3)先化简,再请你用喜爱的数代入求值-参考答案-一、单选题1、C【分析】科学记数法的形式是: ,其中10,为整数所以,取决于原数小数点的移动位数与移动方向,是小数点的移动位数,往左移动,为正整数,往右移动,为负整数本题小数点往右移动到2的后面,所以【详解】解:0.0000025 故选C【点睛】本题考查的知识点是用科学记数法表示绝对值较小的数,关键是在理解科学记数法的基础上确定好的值,同时掌握小数点移动对一个数的影响2、D【分析】根据整式和分式的运算法则即可求出答案【详解】解:A、,故A选项错误B、,故
6、B选项错误C、,故C选项错误D、,故D选项正确故选:D【点睛】本题考查整式和分式的运算法则,解题的关键是熟练运用整式和分式的运算法则,本题属于基础题型3、C【分析】将10乘以对应的进率即可得到答案【详解】解:10ns=s, 故选:C【点睛】此题考查同底数幂的乘法法则:底数不变,指数相加,正确掌握同底数幂的计算法则及单位的换算进率是解题的关键4、A【分析】先去分母,求出分式方程的解,进而得到关于a的不等式组,即可求解【详解】解:由,解得:,且a-10,故选A【点睛】本题主要考查解分式方程以及不等式,掌握去分母,把分式方程化为整式方程,是解题的关键5、B【分析】将原数表示成形式a10-n(1|a|
7、10,n为正整数)【详解】解:0.0000058米用科学记数法可以表示为5.810-6米故选:B【点睛】本题主要考查了运用科学记数法表示较小的数,其一般形式为a10-n(1|a|10,n为正整数),确定a和n的值成为解答本题的关键6、D【分析】科学记数法的表现形式为的形式,其中,n为整数,确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同,当原数绝对值大于等于1时,n是正数,当原数绝对值小于1时n是负数;由此进行求解即可得到答案【详解】解:故选D【点睛】本题主要考查了科学记数法,解题的关键在于能够熟练掌握科学记数法的定义7、A【详解】解:A、是分式,故本选项
8、符合题意;B、是整式,不是分式,故本选项不符合题意;C、是整式,不是分式,故本选项不符合题意;D、是整式,不是分式,故本选项不符合题意;故选:A【点睛】本题主要考查了分式的定义,熟练掌握形如 (其中 为整式,且分母 中含有字母)的式子叫做分式是解题的关键8、B【分析】(1)先解分式方程得,由于解是整数,故可推出的值,解不等式,由于解集为,即可确定的可能值,相加即可得出答案【详解】解分式方程得:,为整数,且,可为,-3,由得:,由得:,解集为,解得:,整数可为,故选:B【点睛】本题考查解分式方程和一元一次不等式组,掌握求解的步骤是解题的关键9、C【分析】设每个A型包装箱可以装书本,则每个B型包装
9、箱可以装书()本,所用A型包装箱的数量=所用B型包装箱的数量6,列分式方程即可【详解】解:设每个A型包装箱可以装书本,则每个B型包装箱可以装书()本,根据题意,得:,故选:C【点睛】本题考查了列分式方程解应用题,由实际问题抽象出分式方程的关键是分析题意找出等量关系10、A【分析】根据分式的定义解答即可【详解】解: 、 的分母中含字母,是分式, 、 、的分母中不含字母,不是分式,故选:A【点睛】本题主要考查分式的定义,判断分式的依据是看分母中是否含有字母,如果含有字母则是分式,如果不含有字母则不是分式,注意不是字母,是常数,所以分母中含的代数式不是分式,是整式二、填空题1、xy【分析】原式利用同
10、分母分式的减法法则计算,约分即可得到结果【详解】解:xy故答案为:xy【点睛】本题考查了同分母分式的减法,熟练掌握运算法则是解答本题的关键2、则分式故答案为:2【点睛】此题主要考查了分式化简求值,正确对式子进行变形,化简求值是解决本题的关键在解题过程中要注意思考已知条件的作用2-1【分析】根据同分母分式的加法法则计算即可【详解】解:故答案为:-1【点睛】本题考查了同分母分式的加减运算,同分母分式的加减法则:分母不变,分子相加减3、【分析】科学记数法的表现形式为的形式,其中,n为整数,确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同,当原数绝对值大于等于10
11、时,n是正数,当原数绝对值小于1时n是负数;由此进行求解即可得到答案【详解】解:由题意得:数用科学记数法表示为;故答案为【点睛】本题主要考查科学记数法,熟练掌握科学记数法是解题的关键4、1或-3或1【分析】分a2+2a为正数和负数两种情况,分别列出关于a的方程求解可得【详解】解:解:当a2+2a0时,=-2,解得a=-3,经检验,a=-3是分式方程的解,且(-3)2+2(-3)=30;a=-3符合题意;当a2+2a0时,a-3=-2,解得a=1,当a=1时,12+21=30,a=1符合题意;所以输入的值a为1或-3故答案为:1或-3【点睛】本题主要考查了解分式方程,解题的关键是掌握分类讨论思想
12、的运用,解分式方程注意要检验5、【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定【详解】解:0.000000076=,故答案为:【点睛】本题考查用科学记数法表示较小的数,一般形式为,其中1|a|10,n为由原数左边起第一个不为零的数字前面的0的个数所决定三、解答题1、(1)(不唯一);(2),;或【分析】(1)理解新定义,直接根据作答即可;(2)把,代入计算,化简后根据新定义进行判断即可;先求解 根据和为一次分式且分母的次数为1,可得分子是一次多项式,且含有或的因式,从而可列
13、方程再解方程求解的值,于是可得答案.【详解】解:(1)根据定义可得:这个二次分式为:(不唯一)(2) , 化简后是二次分式; 所以不是二次分式; 所以不是二次分式; 所以是二次分式; , A与B的和化简后是一次分式,且分母的次数为1,且或且解得:或 或【点睛】本题考查的是分式的加减法,乘法以及乘方运算,新定义运算,理解新定义,按照新定义的规定进行判断是解本题的关键.2、【分析】先方程两边同乘以将分式方程化为整式方程,再按照解一元一次方程的步骤即可得【详解】解:,方程两边同乘以,得,去括号,得,移项、合并同类项,得,系数化为1,得,经检验,是原方程的解,所以原方程的解为【点睛】本题考查了解分式方
14、程,熟练掌握方程的解法是解题关键需注意的是,解分式方程需进行检验3、【分析】根据分式的除法法则即可得【详解】解: 【点睛】本题考查了分式的除法,熟练掌握运算法则是解题关键4、40【分析】设原来每天制作x件,则实际每天制作1.5x件,然后根据题意列出方程求解即可得到答案【详解】设原来每天制作x件,则实际每天制作(1+50%)x件,由题意得:,解得:,经检验是原方程的解,原来每天制作40件,答:原来每天制作40件【点睛】题主要考查了分式方程的实际应用,解题的关键在于能够准确找到等量关系列出方程求解5、(1);(2);(3),当x1时,原式3【分析】(1)分别运用完全平方公式和多项式乘多项式法则展开后,合并即可;(2)先通分,再计算加减即可;(3)先计算括号内的减法(通分后按同分母的分式相加减法则计算)同时把除法变成乘法,再根据分式的乘法法则约分,最后代入求出即可【详解】解:(1)=;(2)=;(3)=,要使式子有意义,x22x0,x24x40,x34x0,x20,x不能是0、2、2,当x1时,原式3【点睛】本题考查了整式的乘法、分式的混合运算及化简求值等知识点,分式混合运算要注意先去括号;分子、分母能因式分解的先因式分解;除法要统一为乘法运算