《最新人教版九年级数学下册第二十八章-锐角三角函数专项练习试卷(无超纲带解析).docx》由会员分享,可在线阅读,更多相关《最新人教版九年级数学下册第二十八章-锐角三角函数专项练习试卷(无超纲带解析).docx(35页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、人教版九年级数学下册第二十八章-锐角三角函数专项练习 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、在正方形网格中,每个小正方形的边长都是1,BAC的位置如图所示,则sinBAC的值为()ABCD2、已知
2、在RtABC中,C=90,A=60,则 tanB的值为( )AB1CD23、在正方形网格中,ABC在网格中的位置如图,则sinB的值为()ABCD4、如图,E是正方形ABCD边AB的中点,连接CE,过点B作BHCE于F,交AC于G,交AD于H,下列说法:;点F是GB的中点;SAHG=SABC其中正确的结论的序号是( )ABCD5、某山坡坡面的坡度,小刚沿此山坡向上前进了米,小刚上升了( )A米B米C米D米6、已知锐角满足tan(+10)=1, 则锐角用的度数为( )A20B35C45D507、请比较sin30、cos45、tan60的大小关系()Asin30cos45tan60Bcos45ta
3、n60sin30Ctan60sin30cos45Dsin30tan60cos458、如图,在ABC中,C90,BC1,AB,则下列三角函数值正确的是()AsinABtanA2CcosB2DsinB9、如图,在平面直角坐标系系中,直线与轴交于点,与轴交于点,与反比例函数在第一象限内的图象交于点,连接若,则的值是( )ABCD10、在RtABC中,C90,BC3,AC4,那么cosB的值等于()ABCD第卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、如图,矩形ABCD中,AB4,AEAD,将ABE沿BE折叠后得到GBE,延长BG交CD于F点,若F为CD中点,则BC的长为 _
4、2、计算的结果为_3、ABC中,B为锐角,cosB,AB,AC2,则ACB的度数为_4、如图,AB是半圆O的直径,AB4,点C,D在半圆上,OCAB,点P是OC上的一个动点,则BPDP的最小值为_5、如图, 小明沿着坡度 的坡面由 到 直行走了 13 米时, 他上升的高度 _米三、解答题(5小题,每小题10分,共计50分)1、计算:2、在平面直角坐标系xOy中,O的半径为1对于线段AB,给出如下定义:若线段AB沿着某条直线l对称可以得到O的弦AB,则称线段AB是O的以直线l为对称轴的“反射线段”,直线l称为“反射轴”(1)如图,线段CD,EF,GH中是O的以直线l为对称轴的“反射线段”有 ;(
5、2)已知A点坐标为(0,2),B点坐标为(1,1),若线段AB是O的以直线l为对称轴的“反射线段”,求反射轴l与y轴的交点M的坐标若将“反射线段”AB沿直线yx的方向向上平移一段距离S,其反射轴l与y轴的交点的纵坐标yM的取值范围为yM,求S(3)已知点M,N是在以原点为圆心,半径为2的圆上的两个动点,且满足MN1,若MN是O的以直线l为对称轴的“反射线段”,当M点在圆上运动一周时,求反射轴l未经过的区域的面积(4)已知点M,N是在以(2,0)为圆心,半径为的圆上的两个动点,且满足MN,若MN是O的以直线l为对称轴的“反射线段”,当M点在圆上运动一周时,请直接写出反射轴l与y轴交点的纵坐标的取
6、值范围3、在平面直角坐标系中,抛物线与轴交于点、点,与轴交于点,点在第三象限的抛物线上,直线经过点、点,点的横坐标为(1)如图1,求抛物线的解析式;(2)如图2,直线交轴于点,过点作轴,交轴于点,交抛物线于点,过点作,交直线于点,求线段的长;(3)在(2)的条件下,点在上,直线交于点,点在第二象限,连接交于点,连接,点在的延长线上,点在直线上,且点的横坐标为5,连接,求点的纵坐标 4、5、为了丰富学生的文化生活,学校利用假期组织学生到红色文化基地A和人工智能科技馆C参观学习,如图所示,学校在B处,A位于学校的东北方向,C位于学校南偏东30方向,C在A的南偏西15方向(3232)km处,学生分成
7、两组,第一组前往A地,第二组前往C地,两组同学同时从学校出发,第一组乘客车,速度是40km/h,第二组乘公交车,速度是32km/h,哪组学生先到达目的地?请说明理由(结果保留根号)-参考答案-一、单选题1、D【分析】先求出ABC的面积,以及利用勾股定理求出,利用面积法求出,进而求解即可【详解】解:如图所示,过点B作BDAC于D,由题意得:,故选D【点睛】本题主要考查了勾股定理和求正弦值,解题的关键在于能够正确作出辅助线,构造直角三角形2、A【分析】根据直角三角形的两个锐角互余即可求得,根据特殊角的三角函数值即可求解【详解】C=90,A=60,又故选A【点睛】本题考查了直角三角形的两个锐角互余,
8、求特殊角的三角函数值,理解特殊角的三角函数值是解题的关键3、A【分析】利用勾股定理先求出AB的长度,最后利用正弦值的定义得到,进而得到最终答案【详解】解:如图所示在中,由勾股定理可得: 故选:A【点睛】本题主要是考察了勾股定理和锐角三角函数的定义,掌握锐角三角函数的定义是解题的关键4、D【分析】先证明ABHBCE,得AH=BE,则,即,再根据平行线分线段成比例定理得:即可判断;设BF=x,CF=2x,则BC=x,计算FG= 即可判断;根据等腰直角三角形得:AC=AB,根据中得:即可判断;根据,可得同高三角形面积的比,然后判断即可【详解】解:四边形ABCD是正方形,AB=BC,HAB=ABC=9
9、0,CEBH,BFC=BCF+CBF=CBF+ABH=90,BCF=ABH,ABHBCE,AH=BE,E是正方形ABCD边AB的中点,BE=AB,即AH/BC,故正确;设BF=x,CF=2x,则BC=x,AH=x,故不正确;四边形ABCD是正方形,AB=BC,ABC=90,AC=AB,故正确;,故正确故选D【点睛】本题属于四边形综合题,主要考查了正方形的性质、全等三角形的判定和性质、勾股定理等知识点,灵活应用相关知识点成为解答本题的关键5、B【分析】设出垂直高度,表示出水平距离,利用勾股定理求解即可【详解】解:设小刚上升了米,则水平前进了米根据勾股定理可得:解得即此时该小车离水平面的垂直高度为
10、50米故选:B【点睛】考查了解直角三角形的应用坡度坡角问题和勾股定理,熟悉且会灵活应用公式:坡度垂直高度水平宽度是解题的关键6、B【分析】根据特殊角的三角函数值计算即可;【详解】tan(+10)=1,且,;故选B【点睛】本题主要考查了特殊角的三角函数值,准确计算是解题的关键7、A【分析】利用特殊角的三角函数值得到sin30,cos45,tan60,从而可以比较三个三角函数大小【详解】解答:解:sin30,cos45,tan60,而,sin30cos45tan60故选:A【点睛】本题主要考查了特殊角的三角函数值的应用,实数比大小,准确计算是解题的关键8、D【分析】根据正弦、余弦及正切的定义直接进
11、行排除选项【详解】解:在ABC中,C90,BC1,AB,;故选D【点睛】本题主要考查三角函数,熟练掌握三角函数的求法是解题的关键9、B【分析】首先根据直线求得点C的坐标,然后根据BOC的面积求得BD的长,然后利用正切函数的定义求得OD的长,从而求得点B的坐标,求得结论【详解】解:直线yk1x+2与x轴交于点A,与y轴交于点C,点C的坐标为(0,2),OC2,SOBC1,BD1,tanBOC,OD3,点B的坐标为(1,3),反比例函数y在第一象限内的图象交于点B,k2133故答案为:B【点睛】本题考查了反比例函数与一次函数的交点坐标,解题的关键是仔细审题,能够求得点B的坐标10、D【分析】根据题
12、意画出图形,求出AB的值,进而利用锐角三角函数关系求出即可【详解】解:如图,在RtABC中,C90,BC3,AC4,cosB故选:D【点睛】本题考查了三角函数的定义,熟知余弦函数的定义是解题关键二、填空题1、4【解析】【分析】延长BF交AD的延长线于点H,证明BCFHDF(AAS),由全等三角形的性质得出BC=DH,由折叠的性质得出A=BGE=90,AE=EG,设AE=EG=x,则AD=BC=DH=3x,得出EH=5x,由锐角三角函数的定义及勾股定理可得出答案【详解】解:延长BF交AD的延长线于点H,四边形ABCD是矩形,AD=BC,ADBC,A=BCF=90,H=CBF,在BCF和HDF中,
13、BCFHDF(AAS),BC=DH,将ABE沿BE折叠后得到GBE,A=BGE=90,AE=EG,EGH=90,AE=AD,设AE=EG=x,则AD=BC=DH=3x,ED=2x,EH=ED+DH=5x,在RtEGH中,sinH=,sinCBF=,AB=CD=4,F为CD中点,CF=2,BF=10,经检验,符合题意,BC=4,故答案为:4【点睛】本题考查了矩形的性质,折叠的性质,全等三角形的判定与性质,解直角三角形,勾股定理,熟练掌握折叠的性质是解题的关键2、【解析】【分析】根据特殊角三角函数值的混合计算法则进行求解即可【详解】解:,故答案为:【点睛】本题主要考查了特殊角三角函数值的混合运算,
14、熟知相关计算法则是解题的关键3、60或120【解析】【分析】根据题意,由于的长没有确定,故分类讨论,分是锐角和钝角两种情况画出图形,解直角三角形即可【详解】解:如图,当是锐角时,过点作于点, cosB,AB,AC2,如图,当是钝角时,过点作的延长线于点, cosB,AB,AC2,故答案为:或【点睛】本题考查了解斜三角形,构造直角三角形并分类讨论是解题的关键4、【解析】【分析】如图,连接AD,PA,PD,OD首先证明PA=PB,再根据PD+PB=PD+PAAD,求出AD即可解决问题【详解】解:如图,连接AD,PA,PD,ODOCAB,OA=OB,PA=PB,COB=90,DOB=90=60,OD
15、=OB,OBD是等边三角形,ABD=60AB是直径,ADB=90,AD=ABsinABD=2,PB+PD=PA+PDAD,PD+PB2,PD+PB的最小值为2,故答案为:2【点睛】本题考查圆周角定理,垂径定理,圆心角,弧,弦之间的关系等知识,解题的关键是学会用转化的思想思考问题5、【解析】【分析】根据坡度的定义求得,即可求得的长【详解】解:设,则根据勾股定理可得故答案为:5【点睛】考查了解直角三角形的应用一坡度坡角问题和勾股定理,熟悉且会灵活应用公式:坡度=垂直高度水平宽度是解题的关键。三、解答题1、【解析】【分析】直接利用特殊角的三角函数值代入,进而利用二次根式的乘法运算法则计算得出答案【详
16、解】解:原式【点睛】本题主要考查了特殊角的三角函数值的混合运算,熟记特殊角的三角函数值是解题关键2、(1)2;(2);(3);(4)或【解析】【分析】(1)的半径为1,则的最长的弦长为2,根据两点的距离可得,进而即可求得答案;(2)根据定义作出图形,根据轴对称的方法求得对称轴,反射线段经过对应圆心的中点,即可求得的坐标;由可得当时,yM,设当取得最大值时,过点作轴,根据题意,分别为沿直线yx的方向向上平移一段距离S 后的对应点,则,根据余弦求得进而代入数值列出方程,解方程即可求得的最大值,进而求得的范围;(3)根据圆的旋转对称性,找到所在的的圆心,如图,以为边在内作等边三角形,连接,取的中点,
17、过作的垂线,则即为反射轴,反射轴l未经过的区域是以为圆心为半径的圆,反射轴l是该圆的切线,求得半径为,根据圆的面积公式进行计算即可;(4)根据(2)的方法找到所在的圆心,当M点在圆上运动一周时,如图,取的中点,的中点,即的中点在以为圆心,半径为的圆上运动,进而即可求得反射轴l与y轴交点的纵坐标的取值范围【详解】(1)的半径为1,则的最长的弦长为2根据两点的距离可得故符合题意的“反射线段”有2条;故答案为:2(2)如图,过点作轴于点,连接 A点坐标为(0,2),B点坐标为(1,1),且,的半径为1,且线段AB是O的以直线l为对称轴的“反射线段”,由可得当时,yM如图,设当取得最大值时,过点作轴,
18、根据题意,分别为沿直线yx的方向向上平移一段距离S 后的对应点,则, 过中点,作直线交轴于点,则即为反射轴yM,即即解得(舍)(3)的半径为1,则是等边三角形,根据圆的旋转对称性,找到所在的的圆心,如图,以为边在内作等边三角形,连接,取的中点,过作的垂线,则即为反射轴, 反射轴l未经过的区域是以为圆心为半径的圆,反射轴l是该圆的切线当M点在圆上运动一周时,求反射轴l未经过的区域的面积为(4)如图,根据(2)的方法找到所在的圆心,设则,是等腰直角三角形,当M点在圆上运动一周时,如图,取的中点,的中点,是的中位线,即的中点在以为圆心,半径为的圆上运动若MN是O的以直线l为对称轴的“反射线段”,则为
19、的切线设与轴交于点,同理可得反射轴l与y轴交点的纵坐标的取值范围为或【点睛】本题考查了中心对称与轴对称,圆的相关知识,切线的性质,三角形中位线定理,余弦的定义,掌握轴对称与中心对称并根据题意作出图形是解题的关键3、(1)抛物线的解析式为:;(2);(3)点N的纵坐标为5【解析】【分析】(1)根据题意可得一次函数图象经过A、D两点,所以当及当时,可确定A、D两点坐标,然后代入抛物线解析式求解即可确定;(2)根据题意当时,代入抛物线解析式确定点P的坐标,求得,然后求出直线与y轴的交点T,利用勾股定理确定,由平行可得三角形相似,利用相似三角形的性质即可得出结果;(3)过点P作轴,且,即,利用相似三角
20、形的性质可确定,求出直线GF的函数解析式,过点M作轴,设且,可求得MF的长度,设直线MP的函数解析式为:,将点,代入即可确定点的坐标,求出,根据题意即可确定点,设点R、点N在如图所示位置:过点N作轴,过点M作,过点R作,利用相似三角形及勾股定理即可得出结果【详解】解:(1)经过A、D两点,当时,解得,当时,将A、D两点代入抛物线解析式可得:,解得:,抛物线的解析式为:;(2)当时,解得:,直线解析式,当时,在中,轴,轴,即;(3)如图所示:过点P作轴,且,即,设直线GF的函数解析式为:,可得:,解得:,直线GF的函数解析式为:,过点M作轴,设且,即,设直线MP的函数解析式为:,将点,代入可得:
21、可得:,解得:,点,解得:,点,设点R、点N在如图所示位置:过点N作轴,过点M作,过点R作,设,则,代入化简可得:,联立求解可得:,点N的纵坐标为5【点睛】题目主要考查一次函数与二次函数的综合问题,包括待定系数法确定函数解析式,相似三角形的判定和性质,勾股定理,锐角三角函数解直角三角形等,理解题意,作出相应辅助线是解题关键4、【解析】【分析】先去掉绝对值,再计算三角函数值和零指数幂,然后化简算术平方根后可以得解【详解】解:原式=【点睛】本题考查实数的运算,熟练掌握特殊角的三角函数值、零指数幂的计算和算术平方根的化简和计算是解题关键5、第二组,见解析【解析】【分析】过点B作BDAC于D,在RtB
22、CD中证得BDCD,设BDx,则CDx,在RtABD中,BAC30,利用三角函数定义表示出AD的长,在RtBDC中,利用三角函数表示出CD的长,由AD+CDAC列出方程问题得解【详解】解:如图,过点B作BDAC于D 依题意得,BAE45,ABC105,CAE15,BAC30,ACB45在RtBCD中,BDC90,ACB45,CBD45,CBDDCB,BDCD,设BDx,则CDx,在RtABD中,BAC30,AB2BD2x,tan30,ADx,在RtBDC中,BDC90,DCB45,sinDCB,BCx,CD+AD32+32,x+,x32,AB2x64,BC,第一组用时:64401.6(h);第二组用时:32(h),1.6,第二组先到达目的地,答:第一组用时1.6小时,第二组用时小时,第二组先到达目的地【点睛】本题考查解直角三角形的应用,方位角的计算,勾股定理,一元一次方程,解题的关键是学会添加常用辅助线面构造直角三角形解决问题