《最新人教版九年级数学下册第二十八章-锐角三角函数章节练习试题(无超纲).docx》由会员分享,可在线阅读,更多相关《最新人教版九年级数学下册第二十八章-锐角三角函数章节练习试题(无超纲).docx(33页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、人教版九年级数学下册第二十八章-锐角三角函数章节练习 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、如图,射线,点C在射线BN上,将ABC沿AC所在直线翻折,点B的对应点D落在射线BN上,点P,Q分别在射
2、线AM、BN上,设,若y关于x的函数图象(如图)经过点,则的值等于( )ABCD2、某山坡坡面的坡度,小刚沿此山坡向上前进了米,小刚上升了( )A米B米C米D米3、如图,琪琪一家驾车从地出发,沿着北偏东的方向行驶,到达地后沿着南偏东的方向行驶来到地,且地恰好位于地正东方向上,则下列说法正确的是( )A地在地的北偏西方向上B地在地的南偏西方向上CD4、如图,在的正方形网格中,每个小正方形的边长均为1,已知的顶点位于正方形网格的格点上,且,则满足条件的是( )ABCD5、如图所示,点C是O上一动点,它从点A开始逆时针旋转一周又回到点A,点C所走过的路程为x,BC的长为y,根据函数图象所提供的信息,
3、AOB的度数和点C运动到弧AB的中点时所对应的函数值分别是()A150,B150,2C120,D120,26、如图,在中,点P为AC上一点,且,则的值为( )A3B2CD7、如图,飞机于空中A处测得目标B处的俯角为,此时飞机的高度AC为a,则A,B的距离为( )AatanBCDcos8、如图,在矩形ABCD中,对角线AC,BD相交于点O,AB6,DAC60,点F在线段AO上从点A至点O运动,连接DF,以DF为边作等边三角形DFE,点E和点A分别位于DF两侧,下列结论:BDEEFC;EDEC;ADFECF;点E运动的路程是2,其中正确结论的序号为()ABCD9、在ABC中,C=90,若BC=4,
4、则AB的长为( )A6BCD10、如图,一艘轮船在小岛A的西北方向距小岛海里的C处,沿正东方向航行一段时间后到达小岛A的北偏东的B处,则该船行驶的路程为( )A80海里B120海里C海里D海里第卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、半径为3cm的圆内有长为的弦,则此弦所对的圆周角的度数为_2、如图, 小明沿着坡度 的坡面由 到 直行走了 13 米时, 他上升的高度 _米3、若x为锐角,且cos(x20),则x_4、如图,在正方形ABCD中,点E是AD的中点,点O是AC的中点,AC与BE交于点F,AGBE,CHBE,垂足分别为G,H,连接OH,OG,CG下列结论:
5、CHAGHG;AGHG;BHOG;AFOFOC213;5SAFGSGHC;OGACBHCD其中结论正确的序号是_5、如图,在ABC中,C90,BD平分ABC交AC于点D,DEAB于点E,AE6,cosA(1)CD_;(2)tanDBC_三、解答题(5小题,每小题10分,共计50分)1、计算:2sin303tan45sin245+cos602、如图,RtABC中,的平分线交BC于点O,以OC为半径的半圆交BC于点D(1)求证:AB是O的切线; (2)如果求AC的长3、如图,内接于,AD平分交BC边于点E,交于点D,过点A作于点F,设的半径为3,(1)过点D作直线MN/BC,求证:是的切线;(2)
6、求的值;(3)设,求的值(用含的代数式表示)4、(1)计算:tan45+3tan30cos60(2)解方程:(x2)(x5)25、计算:-参考答案-一、单选题1、D【分析】由题意可得四边形ABQP是平行四边形,可得APBQx,由图象可得当x9时,y2,此时点Q在点D下方,且BQx9时,y2,如图所示,可求BD7,由折叠的性质可求BC的长,由锐角三角函数可求解【详解】解:AMBN,PQAB,四边形ABQP是平行四边形,APBQx,由图可得当x9时,y2,此时点Q在点D下方,且BQx9时,QD=y2,如图所示,BDBQQDxy7,将ABC沿AC所在直线翻折,点B的对应点D落在射线BN上,ACBN,
7、BCCDBD, cosB,故选:D【点睛】本题考查了平行四边形的判定与性质,折叠的性质,锐角三角函数等知识理解函数图象上的点的具体含义是解题的关键2、B【分析】设出垂直高度,表示出水平距离,利用勾股定理求解即可【详解】解:设小刚上升了米,则水平前进了米根据勾股定理可得:解得即此时该小车离水平面的垂直高度为50米故选:B【点睛】考查了解直角三角形的应用坡度坡角问题和勾股定理,熟悉且会灵活应用公式:坡度垂直高度水平宽度是解题的关键3、B【分析】根据题意可知,由此即可得到即可判断A;由可以判断B;由可以判断C;求出即可判断D【详解】解:如图所示:由题意可知,即在处的北偏西,故A不符合题意;,地在地的
8、南偏西方向上,故B不符合题意;,故C错误,故D不符合题意故选B【点睛】本题考查的是解直角三角形和方向角问题,熟练掌握方向角的概念是解题的关键4、B【分析】先构造直角三角形,由求解即可得出答案【详解】A.,故此选项不符合题意;B.,故此选项符合题意;C.,故此选项不符合题意;D.,故此选项不符合题意;故选:B【点睛】本题考查锐角三角函数,掌握在直角三角形中,是解题的关键5、D【分析】观察图象可得:y的最大值为4,即BC的最大值为4,当x0时,y2,即AB2,如图,点C是的中点,连接OC交AB于点D,则OCAB,ADBD,AOB2BOC,利用三角函数定义可得BOC60,即可求得答案【详解】解:由函
9、数图象可得:y的最大值为4,即BC的最大值为4,O的直径为4,OAOB2,观察图象,可得当x0时,y2,AB2,如图,点C是的中点,连接OC交AB于点D,OCAB,ADBD,AOB2BOC,sinBOC,BOC60,AOB120,OBOC,BOC60,BOC是等边三角形,BCOB2,即点C运动到弧AB的中点时所对应的函数值为2故选:D【点睛】本题主要考查了垂径定理,锐角三角函数,等边三角形的判定和性质,熟练掌握相关知识点是解题的关键6、A【分析】过点P作PDAB交BC于点D,因为,且,则tanPBD=tan45=1,得出PB=PD,再有,进而得出tanAPB的值【详解】解:如图,过点作交于点,
10、,,且,PBD=45,又,故选A【点睛】本题主要考查了相似三角形的性质与判定,解直角三角形,解题的关键在于能够正确作出辅助线进行求解7、C【分析】根据题意可知,根据,即可求得【详解】解:飞机于空中A处测得目标B处的俯角为,AC为a,故选C【点睛】本题考查了正弦的应用,俯角的意义,掌握正弦的概念是解题的关键8、D【分析】根据DAC60,ODOA,得出OAD为等边三角形,再由DFE为等边三角形,得EDFEFDDEF60,即可得出结论正确;如图,连接OE,利用SAS证明DAFDOE,再证明ODEOCE,即可得出结论正确;通过等量代换即可得出结论正确;如图,延长OE至E,使OEOD,连接DE,通过DA
11、FDOE,DOE60,可分析得出点F在线段AO上从点A至点O运动时,点E从点O沿线段OE运动到E,从而得出结论正确;【详解】解:DAC60,ODOA,OAD为等边三角形,DOADAOODA60,ADOD,DFE为等边三角形,EDFEFDDEF60,DFDE,BDE+FDOADF+FDO60,BDEADF,ADF+AFD+DAF180,ADF+AFD180DAF120,EFC+AFD+DFE180,EFC+AFD180DFE120,ADFEFC,BDEEFC,故结论正确;如图,连接OE,由得ADOD,DFDE,ODA60,EDF60,ADFODE,在DAF和DOE中,DAFDOE(SAS),DO
12、EDAF60,COD180AOD120,COECODDOE1206060,COEDOE,在ODE和OCE中,ODEOCE(SAS),EDEC,OCEODE,故结论正确; 由得ODEADF,OCEODE,ADFOCE,即ADFECF,故结论正确;如图,延长OE至E,使OEOD,连接DE,DAFDOE,DOE60,点F在线段AO上从点A至点O运动时,点E从点O沿线段OE运动到E,OEODADABtanABD6tan302,点E运动的路程是2,故结论正确;故选:D【点睛】本题主要考查了矩形性质,等边三角形判定和性质,全等三角形判定和性质,等腰三角形的判定和性质,点的运动轨迹等,解题的关键是熟练掌握全
13、等三角形判定和性质、等边三角形判定和性质等相关知识9、A【分析】由题意直接根据三角函数定义进行分析计算即可得出答案【详解】解:C=90,BC=4,,.故选:A.【点睛】本题考查解直角三角形中三角函数的应用,熟练掌握直角三角形边角之间的关系是解题的关键10、D【分析】过点A作ADBC于点D,分别在 和中,利用锐角三角函数,即可求解【详解】解:过点A作ADBC于点D,根据题意得: 海里,ADC=ADB=90,CAD=45,BAD=60,在 中, 海里,在 中, 海里, 海里,即该船行驶的路程为海里故选:D【点睛】本题主要考查了解直角三角形,熟练掌握特殊角的锐角三角函数值是解题的关键二、填空题1、6
14、0或120【解析】【分析】如下图所示,分两种情况考虑:D点在优弧CDB上或E点在劣弧BC上时,根据三角函数可求出OCF的大小,进而求出BOC的大小,再由圆周角定理可求出D、E大小,进而得到弦BC所对的圆周角【详解】解:分两种情况考虑:D在优弧CDB上或E在劣弧BC上时,可得弦BC所对的圆周角为D或E,如下图所示,作OFBC,由垂径定理可知,F为BC的中点,BC=,CF=BF=BC= =,又因为半径为3,OC=3,在RtFOC中,cosOCF= =3=,OCF=30,OC=OB,OCF=OBF=30,COB=120,D=COB=120=60,又圆内接四边形的对角互补,E=120,则弦BC所对的圆
15、周角为60或120故答案为:60或120【点睛】此题考查了圆周角定理,圆内接四边形的性质,锐角三角函数定义,以及特殊角的三角函数值,熟练掌握圆周角定理是解本题的关键2、【解析】【分析】根据坡度的定义求得,即可求得的长【详解】解:设,则根据勾股定理可得故答案为:5【点睛】考查了解直角三角形的应用一坡度坡角问题和勾股定理,熟悉且会灵活应用公式:坡度=垂直高度水平宽度是解题的关键。3、50【解析】【分析】根据特殊角的三角函数值,求得x-20的值,即可求解【详解】解:cos(x-20)=32,x-20=30,x=50故答案为:50【点睛】此题考查了根据三角函数值求角,解题的关键是熟记特殊角的三角函数值
16、4、【解析】【分析】根据四边形ABCD为正方形性质,和点E是AD的中点得出AE=,根据三角函数定义得出tanABE=,得出BG=2AG,证明BAGCBH(AAS),得出AG=BH,BG=CH,可判断正确;根据BG=2AG,利用线段差得出HG=BG-AG=2AG-AG=AG,可判断正确;取CH中点J,连结OJ,先证AGOCJO(SAS),得出AOG=COJ,GO=JO,再证HGOHJO(SSS),得出HOG=HOJ,说明点G,O,J三点共线,得出GHJ为等腰直角三角形,利用勾股定理HG=可判断正确;四边形ABCD为正方形,可证AEFCBF,得出,求出,可判断正确;先证AGFCHF,得出GF=,求
17、出SAFG,SGHC=,可判断不正确;利用sinDAC=sinOGH=,OGACBHCD,可判断正确【详解】解:四边形ABCD为正方形,AB=BC=AD,EAB=ABC=90,点E是AD的中点,AE=tanABE=,BG=2AG,AGBE,CHBE,AGB=BHC=90,ABG+BAG=90,ABG+CBH=90,BAG=CBH,在BAG和CBH中,BAGCBH(AAS),AG=BH,BG=CH,CHAGBG-BH=HG,故正确;BG=2AG,HG=BG-AG=2AG-AG=AG,故正确;取CH中点J,连结OJ,CJ=,AGBE,CHBE,AGCH,GAO=JCO,点O是AC的中点,AO=CO
18、,在AGO和CJO中,AGOCJO(SAS),AOG=COJ,GO=JO,在HGO和HJO中,HGOHJO(SSS),HOG=HOJ,GOH+HOJ=AOG+FOH+HOJ=COJ+FOH+HOJ=AOC=180,点G,O,J三点共线,HOG+HOJ=2HOG=180,HOG=90,GHJ=90,HG=HJ,GHJ为等腰直角三角形,点O为JG中点,OH=OG=OJ,HG=,BH=HG=OG,故正确;四边形ABCD为正方形,ADBC,即AFBC,AEF=CBF,EAF=BCF,AEFCBF,OC-OF=, AFOFOC=213;故正确;AFG=CFH,AGF=CHF=90,AGFCHF,,,GF
19、+FH=GH,GF=SAFG,SGHC=SAFGSGHC,故不正确;AC为正方形对角线,DAC=45,HOG=90,OH=OG,OGH=45,sinDAC=sinOGH=,OGACBHCD,故正确其中结论正确的序号是故答案为:【点睛】本题考查正方形性质,锐角三角函数值,三角形全等判定与性质,三点共线,等腰直角三角形判定与性质,勾股定理,三角形相似判定与性质,三角形面积,本题难度大,涉及知识多,图形复杂,掌握多方面知识是解题关键5、 8 【解析】【分析】(1)在RtADE中,根据余弦函数的定义求出AD,利用勾股定理求出DE,再由角平分线的性质可得DC=DE=8;(2)由AD=10,DC=8,得A
20、C=AD+DC=18由A=A,AED=ACB,可知ADEABC,由相似三角形对应边成比例可求出BC的长,根据三角函数的定义可求出tanDBC=【详解】解:(1)在RtADE中,AED=90,AE=6,cosA=,AD=AEcosA=10,DE=102-62=8BD平分ABC,DEAB,DCBC,CD=DE=8;故答案为:8;(2)由(1)AD=10,DC=8,AC=AD+DC=18,在ADE与ABC中,A=A,AED=ACB,ADEABC,DEBC=AEAC,即8BC=618,BC=24,tanDBC=CDBC=824=13故答案为:【点睛】本题考查了解直角三角形,角平分线的性质、相似三角形的
21、判定与性质,三角函数的定义,求出DE是解第(1)小题的关键;求出BC是解第(2)小题的关键三、解答题1、0【解析】【分析】根据特殊角三角函数值的混合计算法则求解即可【详解】解: 【点睛】本题主要考查了特殊角三角函数值的混合计算,熟知相关计算法则是解题的关键2、(1)见解析;(2)6【解析】【分析】(1)过点作,垂足为,根据角平分线的性质证明,进而即可证明AB是O的切线;(2)勾股定理求得EB,进而根据即可求得AC【详解】(1)证明:如图,过点作,垂足为,是的平分线,,OC为半径为的半径是的切线(2)在中,【点睛】本题考查了角平分线的性质,切线的判定与性质,勾股定理,根据正切值求边长,掌握切线的
22、判定是解题的关键3、(1)证明见解析;(2);(3)【解析】【分析】(1)连接,由角平分线的性质可得,可得,可得,可证,可得结论;(2)连接并延长交于,通过证明,可得,可得结论;(3)由“”可证,可得,可得,由锐角三角函数可得,即可求解【详解】(1)如图1,连接,平分,是的切线;(2)如图2,连接并延长交于,连接,是直径,又,的半径为3,(3)如图3,过点作于,交延长线于,连接,平分,【点睛】本题是圆的综合题,考查了圆的有关知识,角平分线的性质,全等三角形的判定和性质,相似三角形的判定和性质,添加恰当辅助线构造全等三角形或相似三角形是本题的关键4、(1)0;(2)【解析】【分析】(1)根据特殊角的三角函数值,再进行化简求值即可(2)先化简为一般式,再根据因式分解法解一元二次方程即可【详解】解:(1)原式=(32-1)2-1+33312=1-32-1+32(2)x2-7x+10+2=0x-3x-4=0【点睛】本题考查了特殊角的锐角三角函数值,因式分解法解一元二次方程,牢记特殊角的三角函数和掌握解一元二次方程的方法是解题的关键5、7【解析】【分析】根据,立方根的求法,特殊三角函数的值,积的乘方,计算即可得答案【详解】解: =1-2+6-(-2)=7【点睛】本题考查了二次根式、零指数幂、特殊三角函数的值、积的乘方的相关计算,做题的关键是掌握相关法则,特别积的乘方的逆运算,认真计算