《难点解析京改版八年级数学下册第十五章四边形章节训练试卷(无超纲).docx》由会员分享,可在线阅读,更多相关《难点解析京改版八年级数学下册第十五章四边形章节训练试卷(无超纲).docx(22页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、京改版八年级数学下册第十五章四边形章节训练 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、如图,在平面直角坐标系中,点A是x轴正半轴上的一个动点,点C是y轴正半轴上的点,于点C已知,点B到原点的最大距离为
2、( )A22B18C14D102、如图,小明从点A出发沿直线前进10m到达点B,向左转,后又沿直线前进10m到达点C,再向左转30后沿直线前进10m到达点照这样走下去,小明第一次回到出发点A,一共走了( )米A80B100C120D1403、下列几何图形既是轴对称图形又是中心对称图形的是( )ABCD4、如图,A,B,C是某社区的三栋楼,若在AC中点D处建一个5G基站,其覆盖半径为300 m,则这三栋楼中在该5G基站覆盖范围内的是( )AA,B,C都不在B只有BC只有A,CDA,B,C5、若一个正多边形的每一个外角都等于36,则这个正多边形的边数是()A7B8C9D106、直角三角形的两条直角
3、边分别为5和12,那么这个三角形的斜边上的中线长为()A6B6.5C10D137、下列图形中不是中心对称图形的是( )ABCD8、下列图形中,可以看作是中心对称图形的是( )ABCD9、下列图案中,是中心对称图形,但不是轴对称图形的是( )ABCD10、下列图形中,既是中心对称图形也是轴对称图形的是( )A圆B平行四边形C直角三角形D等边三角形第卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、如图,点O是正方形ABCD的称中心O,互相垂直的射线OM,ON分别交正方形的边AD,CD于E,F两点,连接EF;已知(1)以点E,O,F,D为顶点的图形的面积为_;(2)线段EF的最
4、小值是_2、已知一直角三角形的两直角边长分别为6和8,则斜边上中线的长度是_3、过多边形的一个顶点作对角线,可将多边形分成5个三角形,则多边形的边数是_4、如图,四边形和四边形都是边长为4的正方形,点是正方形对角线的交点,正方形绕点旋转过程中分别交,于点,则四边形的面积为_5、在平面直角坐标系中,点P(-3,7)关于原点对称的点的坐标是_三、解答题(5小题,每小题10分,共计50分)1、如图,将矩形纸片ABCD沿对角线BD折叠,使点A落在平面上的F点处,DF交BC于点E,CD5,DB13,求BE的长2、如图,是的中位线,延长到,使,连接求证:3、如图,平行四边形ABCD中,点E、F分别在CD、
5、BC的延长线上,(1)求证:D是EC中点;(2)若,于点F,直接写出图中与CF相等的线段4、如图,在中,过点作于点,点在边上,连接,(1)求证:四边形是矩形;(2)若,求证:平分5、如图,四边形ABCD是正方形,BEBF,BEBF,EF与BC交于点G(1)求证:AECF;(2)若ABE62,求GFC+BCF的值-参考答案-一、单选题1、B【分析】首先取AC的中点E,连接BE,OE,OB,可求得OE与BE的长,然后由三角形三边关系,求得点B到原点的最大距离【详解】解:取AC的中点E,连接BE,OE,OB,AOC90,AC16,OECEAC8,BCAC,BC6,BE10,若点O,E,B不在一条直线
6、上,则OBOE+BE18若点O,E,B在一条直线上,则OBOE+BE18,当O,E,B三点在一条直线上时,OB取得最大值,最大值为18故选:B【点睛】此题考查了直角三角形斜边上的中线的性质以及三角形三边关系此题难度较大,注意掌握辅助线的作法,注意掌握数形结合思想的应用2、C【分析】由小明第一次回到出发点A,则小明走过的路程刚好是一个多边形的周长,由多边形的外角和为,每次的转向的角度的大小刚好是多边形的一个外角,则先求解多边形的边数,从而可得答案.【详解】解:由 可得:小明第一次回到出发点A,一个要走米,故选C【点睛】本题考查的是多边形的外角和的应用,掌握“由多边形的外角和为得到一共要走12个1
7、0米”是解本题的关键.3、D【分析】根据轴对称图形与中心对称图形的概念求解【详解】解:A、不是轴对称图形,是中心对称图形,选项说法错误,不符合题意;B、是轴对称图形,不是中心对称图形,选项说法错误,不符合题意;C、是轴对称图形,不是中心对称图形,选项说法错误,不符合题意;D、是轴对称图形,是中心对称图形,选项说法正确,符合题意;故选D【点睛】本题考查了中心对称图形与轴对称图形的概念解题的关键是掌握轴对称图形寻找对称轴,图形两部分沿对称轴折叠后可重合;中心对称图形是要寻找对称中心,旋转180度后与原图重合4、D【分析】根据三角形边长然后利用勾股定理逆定理可得为直角三角形,由直角三角形斜边上的中线
8、性质即可得【详解】解:如图所示:连接BD,为直角三角形,D为AC中点,覆盖半径为300 ,A、B、C三个点都被覆盖,故选:D【点睛】题目主要考查勾股定理逆定理,直角三角形斜边中线的性质等,理解题意,综合运用两个定理是解题关键5、D【分析】根据多边形外角和定理求出正多边形的边数【详解】正多边形的每一个外角都等于36,正多边形的边数10故选:D【点睛】本题考查了多边形内角与外角,根据外角和的大小与多边形的边数无关,由外角和求正多边形的边数,是常见的题目,需要熟练掌握6、B【分析】根据勾股定理可求得直角三角形斜边的长,再根据直角三角形斜边上的中线等于斜边的一半即可求解【详解】解:直角三角形两直角边长
9、为5和12,斜边,此直角三角形斜边上的中线的长6.5故选:B【点睛】本题主要考查勾股定理及直角三角形斜边中线定理,熟练掌握勾股定理及直角三角形斜边中线定理是解题的关键7、B【分析】根据中心对称图形的概念求解【详解】解:A、是中心对称图形,故本选项不合题意;B、不是中心对称图形,故本选项符合题意;C、是中心对称图形,故本选项不合题意;D、是中心对称图形,故本选项不合题意故选:B【点睛】本题考查了中心对称图形的知识,把一个图形绕某一点旋转180,如果旋转后的图形能够与原来的图形重合,那么这个图形就叫做中心对称图形8、C【分析】根据中心对称图形的定义进行逐一判断即可【详解】解:A、不是中心对称图形,
10、故此选项不符合题意;B、不是中心对称图形,故此选项不符合题意;C、是中心对称图形,故此选项符合题意;D、不是中心对称图形,故此选项不符合题意;故选C【点睛】本题主要考查了中心对称图形的识别,解题的关键在于能够熟练掌握中心对称图形的定义:把一个图形绕着某一个点旋转180,如果旋转后的图形能够与原来的图形重合,那么这个图形叫做中心对称图形,这个点就是它的对称中心9、C【分析】根据轴对称图形和中心对称图形的定义求解即可【详解】解:A既是轴对称图形,又是中心对称图形,本选项不符合题意;B既是轴对称图形,又是中心对称图形,本选项不符合题意;C是中心对称图形,但不是轴对称图形,本选项符合题意;D既是轴对称
11、图形,又是中心对称图形,本选项不符合题意;故选:C【点睛】此题考查了轴对称图形和中心对称图形的定义,解题的关键是熟练掌握轴对称图形和中心对称图形的定义轴对称图形:平面内,一个图形沿一条直线折叠,直线两旁的部分能够完全重合的图形中心对称图形:在平面内,把一个图形绕着某个点旋转180,如果旋转后的图形能与原来的图形重合,那么这个图形叫做中心对称图形10、A【分析】根据轴对称图形与中心对称图形的概念求解【详解】解:A圆既是中心对称图形也是轴对称图形,故此选项符合题意;B平行四边形是中心对称图形,不是轴对称图形,故此选项不合题意;C直角三角形既不是中心对称图形,也不一定是轴对称图形,不符合题意;D等边
12、三角形不是中心对称图形,是轴对称图形,故此选项不合题意故选:A【点睛】本题考查中心对称图形和轴对称图形的知识,关键是掌握好中心对称图形与轴对称图形的概念轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,图形旋转180后与原图重合二、填空题1、1 【分析】(1)连接OA、OD,根据正方形的性质和全等三角形的判定证明OAEODF,利用全等三角形的性质得出四边形EOFD的面积等于AOD的面积即可求解;(2)根据全等三角形的性质证得EOF为等腰直角三角形,则EF=OE,当OEAD时OE最小,则EF最小,求解此时在OE即可解答【详解】解:(1)连接OA、OD,四边形AB
13、CD是正方形,OA=OD,AOD=90,EAO=FDO=45,AOE+DOE=90,OEOF,DOF+DOE=90,AOE=DOF,在OAE和ODF中,OAEODF(ASA),SOAE=SODF,S四边形EOFD = SODE+SODF= SODE+SOAE= SAOD= S正方形ABCD,AD=2,S四边形EOFD= 4=1,故答案为:1;(2)OAEODF,OE=OF,EOF为等腰直角三角形,则EF=OE,当OEAD时OE最小,即EF最小,OA=OD,AOD=90,OE=AD=1,EF的最小值,故答案为:【点睛】本题考查正方形的性质、全等三角形的判定与性质、等角的余角相等、等腰直角三角形的
14、判定与性质、垂线段最短,熟练掌握相关知识的联系与运用是解答的关键2、5【分析】直角三角形中,斜边长为斜边中线长的2倍,所以求斜边上中线的长求斜边长即可【详解】解:在直角三角形中,两直角边长分别为6和8,则斜边长10,斜边中线长为105,故答案为 5【点睛】本题考查了直角三角形斜边上的中线等于斜边的一半,勾股定理,根据勾股定理求得斜边长是解题的关键3、7【分析】根据n边形从一个顶点出发可引出(n3)条对角线,可组成(n2)个三角形,依此可得n的值【详解】解:设多边形的边数为n,由题意得,n25,解得:n7,即这个多边形是七边形故答案为:7【点睛】本题考查了多边形的对角线,求对角线条数时,直接代入
15、边数n的值计算,而计算边数时,需利用方程思想,解方程求n4、4【分析】过点O作OGAB,垂足为G,过点O作OHBC,垂足为H,把四边形的面积转化为正方形OGBH的面积,等于正方形ABCD面积的【详解】如图,过点O作OGAB,垂足为G,过点O作OHBC,垂足为H,四边形ABCD的对角线交点为O,OA=OC,ABC=90,AB=BC,OGBC,OHAB,四边形OGBH是矩形,OG=OH=,GOH=90,=4,FOH+FOG=90,EOG+FOG=90,FOH=EOG,OGE=OHF=90,OG=OH,OGEOHF,=4,故答案为:4【点睛】本题考查了正方形的性质,三角形的全等与性质,补形法计算面积
16、,熟练掌握正方形的性质,灵活运用补形法计算面积是解题的关键5、 (3,-7)【分析】根据关于原点对称的点的横坐标互为相反数,纵坐标互为相反数,可得答案【详解】解:在平面直角坐标系中,点P(-3,7)关于原点对称的点的坐标是(3,-7),故答案为:(3,-7)【点睛】本题考查了关于原点对称的点的坐标,关于原点对称的点的横坐标互为相反数,纵坐标互为相反数三、解答题1、【分析】由矩形的性质可知ABDC,AC90,由翻折的性质可知ABBF,AF90,于是可得到FC,BFDC,然后依据AAS可证明DCEBFE,依据勾股定理求得BC的长,由全等三角形的性质可知BEDE,最后再EDC中依据勾股定理可求得ED
17、的长,从而得到BE的长【详解】解:四边形ABCD为矩形,ABCD,AC90由翻折的性质可知FA,BFAB,BFDC,FC在DCE与BEF中,DCEBFE在RtBDC中,由勾股定理得:BCDCEBFE,BEDE设BEDEx,则EC12x在RtCDE中,CE2CD2DE2,即(12x)252x2解得:xBE【点睛】本题主要考查的是翻折的性质、勾股定理的应用、矩形的性质,依据勾股定理列出关于x的方程是解题的关键2、见解析【分析】由已知条件可得DF=AB及DFAB,从而可得四边形ABFD为平行四边形,则问题解决【详解】是的中位线DEAB,AD=DCDFABEF=DEDF=AB四边形ABFD为平行四边形
18、AD=BFBF=DC【点睛】本题主要考查了平行四边形的判定与性质、三角形中位线的性质定理,掌握它们是解答本题的关键当然本题也可以用三角形全等的知识来解决3、(1)见祥解;(2)AB=DC=DE=DF=CF,证明见详解【分析】(1)根据四边形ABCD是平行四边形,得出ABCD即(ABED),AB=CD,根据,可证四边形ABDE为平行四边形,得出AB=DE即可;(2)根据EFBF,CD=ED,根据直角三角形斜边中线可得DF=CD=ED,再证DCF为等边三角形即可【详解】证明:(1)四边形ABCD是平行四边形,ABCD即(ABED),AB=CD,四边形ABDE为平行四边形,AB=DE,CD=ED,点
19、D为CE中点;(2)结论为:AB=DC=DE=DF=CF,EFBF,CD=ED,DF=CD=ED,ABCD,ABC=60,DCF=ABC=60,DCF为等边三角形,CF=CD=DF=AB=ED【点睛】本题考查平行四边形的判定与性质,线段中点判定,直角三角形斜边中线性质,等边三角形判定与性质,掌握平行四边形的判定与性质,线段中点判定,直角三角形斜边中线性质,等边三角形判定与性质是解题关键4、(1)见解析;(2)见解析【分析】(1)先证明四边形是平行四边形,结合,从而可得结论;(2)先证明,再求解 证明证明从而可得结论.【详解】(1)证明:四边形是平行四边形,即 ,四边形是平行四边形,四边形是矩形
20、;(2)四边形是平行四边形, 四边形是矩形; 在中,由勾股定理,得,即平分【点睛】本题考查的是勾股定理的应用,角平分线的定义,平行四边形的判定与性质,矩形的判定,证明四边形是平行四边形是解(1)的关键,证明是解(2)的关键.5、(1)证明见解析;(2)73【分析】(1)根据正方形的性质及各角之间的关系可得:,由全等三角形的判定定理可得,再根据其性质即可得证;(2)根据垂直及等腰三角形的性质可得,再由三角形的外角的性质可得,由此计算即可【详解】(1)证明:四边形ABCD是正方形,在和中,;(2)解:BEBF,又,四边形ABCD是正方形,的值为【点睛】题目主要考查全等三角形的判定和性质,正方形的性质,三角形的外角性质,理解题意,熟练运用各个定理性质是解题关键