《难点详解京改版八年级数学下册第十五章四边形定向训练试题(无超纲).docx》由会员分享,可在线阅读,更多相关《难点详解京改版八年级数学下册第十五章四边形定向训练试题(无超纲).docx(27页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、京改版八年级数学下册第十五章四边形定向训练 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、下列图形中,可以看作是中心对称图形的是( )ABCD2、已知三角形三边长分别为7cm,8cm,9cm,作三条中位线
2、组成一个新的三角形,同样方法作下去,一共做了五个新的三角形,则这五个新三角形的周长之和为( )A46.5cmB22.5cmC23.25cmD以上都不对3、下列图形既是中心对称图形,又是轴对称图形的是( )ABCD4、下列图形中不是中心对称图形的是( )ABCD5、下图是文易同学答的试卷,文易同学应得( )A40分B60分C80分D100分6、如果一个多边形的外角和等于其内角和的2倍,那么这个多边形是( )A三角形B四边形C五边形D六边形7、下列图形中,是中心对称图形的是( )ABCD8、下列图形中,既是轴对称图形,又是中心对称图形的是( )ABCD9、在平行四边形ABCD中,A30,那么B与A
3、的度数之比为( )A4:1B5:1C6:1D7:110、若一个直角三角形的周长为,斜边上的中线长为1,则此直角三角形的面积为( )ABCD第卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、平面直角坐标系中,四边形ABCD的顶点坐标分别是A(3,0),B(0,2),C(3,0),D(0,2),则四边形ABCD是_2、如图,已知在矩形中,将沿对角线AC翻折,点B落在点E处,连接,则的长为_3、如图,在平面直角坐标系内,矩形OABC的顶点A(3,0),C(0,9),点D和点E分别位于线段AC,AB上,将ABC沿DE对折,恰好能使点A和点C重合若x轴上有一点P,使AEP为等腰三角
4、形,则点P的坐标为_4、若一个n边形的每个内角都等于135,则该n边形的边数是_5、如图,的度数为_三、解答题(5小题,每小题10分,共计50分)1、如图,平行四边形ABCD中,对角线AC、BD相交于点O,ABAC,AB=3,AD=5,求BD的长2、如图,在长方形ABCD中,AB3,BC4,点E是BC边上一点,连接AE,将B沿直线AE折叠,使点B落在点处(1)如图1,当点E与点C重合时,与AD交于点F,求证:FAFC;(2)如图2,当点E不与点C重合,且点在对角线AC上时,求CE的长3、综合与实践(1)如图1,在正方形ABCD中,点M、N分别在AD、CD上,若MBN45,则MN,AM,CN的数
5、量关系为 (2)如图2,在四边形ABCD中,BCAD,ABBC,A+C180,点M、N分别在AD、CD上,若MBNABC,试探索线段MN、AM、CN有怎样的数量关系?请写出猜想,并给予证明(3)如图3,在四边形ABCD中,ABBC,ABC+ADC180,点M、N分别在DA、CD的延长线上,若MBNABC,试探究线段MN、AM、CN的数量关系为 4、如图,在RtABC中,ACB90,B30,AB20点P从点B出发,以每秒2个单位长度的速度沿BC向终点C运动,同时点M从点A出发,以每秒4个单位的速度沿AB向终点B运动,过点P作PQAB于点Q,连结PQ,以PQ、MQ为邻边作矩形PQMN,当点P运动到
6、终点时,整个运动停止,设矩形PQMN与RtABC重叠部分图形的面积为S(S0),点P的运动时间为t秒(1)BC的长为 ;用含t的代数式表示线段PQ的长为 ;(2)当QM的长度为10时,求t的值;(3)求S与t的函数关系式;(4)当过点Q和点N的直线垂直于RtABC的一边时,直接写出t的值5、在中,斜边,过点作,以AB为边作菱形ABEF,若,求的面积-参考答案-一、单选题1、C【分析】根据中心对称图形的定义进行逐一判断即可【详解】解:A、不是中心对称图形,故此选项不符合题意;B、不是中心对称图形,故此选项不符合题意;C、是中心对称图形,故此选项符合题意;D、不是中心对称图形,故此选项不符合题意;
7、故选C【点睛】本题主要考查了中心对称图形的识别,解题的关键在于能够熟练掌握中心对称图形的定义:把一个图形绕着某一个点旋转180,如果旋转后的图形能够与原来的图形重合,那么这个图形叫做中心对称图形,这个点就是它的对称中心2、C【分析】如图所示,DE,DF,EF分别是三角形ABC的中位线,GH,GI,HI分别是DEF的中位线,则,即可得到DEF的周长,由此即可求出其他四个新三角形的周长,最后求和即可【详解】解:如图所示,DE,DF,EF分别是三角形ABC的中位线,GH,GI,HI分别是DEF的中位线,DEF的周长,同理可得:GHI的周长,第三次作中位线得到的三角形周长为,第四次作中位线得到的三角形
8、周长为第三次作中位线得到的三角形周长为这五个新三角形的周长之和为,故选C【点睛】本题主要考查了三角形中位线定理,解题的关键在于能够熟练掌握三角形中位线定理3、D【分析】一个图形绕着某固定点旋转180度后能够与原来的图形重合,则称这个图形是中心对称图形,这个固定点叫做对称中心;如果一个图形沿着某条直线对折后,直线两旁的部分能够重合,则称这个图形是轴对称图形,这条直线叫做对称轴;根据这两个概念逐项判断即可【详解】A、既不是中心对称图形,也不是轴对称图形,故不符合题意;B、是轴对称图形,但不是中心对称图形,故不符合题意;C、是中心对称图形,但不是轴对称图形,故不符合题意;D、既是中心对称图形,也是轴
9、对称图形,故符合题意【点睛】本题考查了中心对称图形与轴对称图形的识别,掌握它们的概念是关键4、B【分析】根据中心对称图形的概念求解【详解】解:A、是中心对称图形,故本选项不合题意;B、不是中心对称图形,故本选项符合题意;C、是中心对称图形,故本选项不合题意;D、是中心对称图形,故本选项不合题意故选:B【点睛】本题考查了中心对称图形的知识,把一个图形绕某一点旋转180,如果旋转后的图形能够与原来的图形重合,那么这个图形就叫做中心对称图形5、B【分析】分别根据菱形的判定与性质、正方形的判定、矩形的判定与性质进行判断即可【详解】解:(1)根据对角线互相垂直的平行四边形是菱形可知(1)是正确的;(2)
10、根据根据对角线互相垂直且相等的平行四边形是正方形可知(2)是正确的;(3)根据对角线相等的平行四边形是矩形可知(3)是正确的;(4)根据菱形的对角线互相垂直,不一定相等可知(4)是错误的;(5)根据矩形是中心对称图形,对角线的交点是对称中心,并且矩形的对角线相等且互相平分可知,矩形的对称中心到四个顶点的距离相等是正确的,文易同学答对3道题,得60分,故选:B【点睛】本题考查菱形的判定与性质、正方形的判定、矩形的判定与性质,熟练掌握特殊四边形的判定与性质是解答的关键6、A【分析】多边形的外角和是360度,多边形的外角和是内角和的2倍,则多边形的内角和是180度,则这个多边形一定是三角形【详解】解
11、:多边形的外角和是360度,又多边形的外角和是内角和的2倍,多边形的内角和是180度,这个多边形是三角形故选:A【点睛】考查了多边形的外角和定理,解题的关键是掌握多边形的外角和定理7、B【分析】根据中心对称图形的概念,对各选项分析判断即可得解把一个图形绕某一点旋转180,如果旋转后的图形能够与原来的图形重合,那么这个图形就叫做中心对称图形【详解】选项、均不能找到这样的一个点,使图形绕某一点旋转后与原来的图形重合,所以不是中心对称图形,选项能找到这样的一个点,使图形绕某一点旋转后与原来的图形重合,所以是中心对称图形,故选:【点睛】本题考查了中心对称图形的概念,中心对称图形是要寻找对称中心,旋转1
12、80度后与原图重合8、C【分析】根据轴对称图形和中心对称图形的概念,对各选项分析判断即可得解把一个图形绕某一点旋转180,如果旋转后的图形能够与原来的图形重合,那么这个图形就叫做中心对称图形;如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形【详解】解:A、不是轴对称图形,是中心对称图形,不符合题意;B、是轴对称图形,不是中心对称图形,不符合题意;C、既是轴对称图形,又是中心对称图形,符合题意;D、是轴对称图形,不是中心对称图形,不符合题意故选:C【点睛】本题考查了中心对称图形与轴对称图形的概念,轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要
13、寻找对称中心,旋转180度后与原图重合9、B【分析】根据平行四边形的性质先求出B的度数,即可得到答案【详解】解:四边形ABCD是平行四边形,ADBC,B=180-A=150,B:A=5:1,故选B【点睛】本题主要考查了平行四边形的性质,解题的关键在于能够熟练掌握平行四边形邻角互补10、B【分析】根据直角三角形斜边上中线的性质,可得斜边为2,然后利用两直角边之间的关系以及勾股定理求出两直角边之积,从而确定面积【详解】解:根据直角三角形斜边上中线的性质可知,斜边上的中线等于斜边的一半,得AC=2BD=2一个直角三角形的周长为3+,AB+BC=3+-2=1+等式两边平方得(AB+BC)2= (1+)
14、 2,即AB2+BC2+2ABBC=4+2,AB2+BC2=AC2=4,2ABBC=2,ABBC=,即三角形的面积为ABBC=故选:B【点睛】本题考查直角三角形斜边上的中线,勾股定理,三角形的面积等知识点的理解和掌握,巧妙求出ACBC的值是解此题的关键,值得学习应用二、填空题1、菱形【分析】先在坐标系中画出四边形ABCD,由A、B、C、D的坐标即可得到OA=OC=3,OB=OD=2,再由ACBD,即可得到答案【详解】解:图象如图所示:A(-3,0)、B(0,2)、C(3,0)、D(0,-2),OA=OC=3,OB=OD=2,四边形ABCD为平行四边形,ACBD,四边形ABCD为菱形,故答案为:
15、菱形【点睛】本题主要考查了菱形的判定,坐标与图形,解题的关键在于能够熟练掌握菱形的判定条件2、【分析】过点E作EFAD于点F,先证明CG=AG,再利用勾股定理列方程,求出AG的值,结合三角形的面积法和勾股定理,即可求解【详解】解:如图所示:过点E作EFAD于点F,有折叠的性质可知:ACB=ACE,ADBC,ACB=CAD,CAD=ACE,CG=AG,设CG=x,则DG=8-x,在中,x=5,AG=5,在中,EG=,EFAD,AEG=90,在中,、DF=8-=,在中,故答案是:【点睛】本题主要考查矩形的性质,折叠的性质,勾股定理,等腰三角形的判定定理,添加辅助线构造直角三角形,是解题的关键3、(
16、8,0)或(-2,0)-2,0)或(8,0)【分析】由矩形的性质可得BC=OA =3,AB=OC=9,B=90=OAE,由折叠的性质可得AE=CE,由勾股定理可求AE的长,由等腰三角形的性质可求解【详解】解:四边形OABC矩形,且点A(3,0),点C(0,9),BC=OA =3,AB=OC=9,B=90=OAE,将ABC沿DE对折,恰好能使点A与点C重合AE=CE,CE2=BC2+BE2,CE2=9+(9-CE)2,CE=5,AE=5,AEP为等腰三角形,且EAP=90,AE=AP=5,点E坐标(8,0)或(-2,0)故答案为:(8,0)或(-2,0)【点睛】本题考查了翻折变换,等腰三角形的性
17、质,矩形的性质,勾股定理,坐标与图形变化-对称,求出AE的长是本题的关键4、8【分析】根据题意求得多边形的外角,根据360度除以多边形的外角即可求得n边形的边数【详解】解:一个n边形的每个内角都等于135,则这个n边形的每个外角等于该n边形的边数是故答案为:【点睛】本题考查了多边形的内角与外角的关系,求得多边形的外角是解题的关键5、【分析】根据三角形外角的性质和四边形内角和等于360可得A+B+C+D+E+F的度数【详解】解:如图,1=D+F,2=A+E,1+2+B+C=360,A+B+C+D+E+F=360故答案为:【点睛】本题考查了四边形的内角和,三角形的外角的性质,掌握三角形外角的性质是
18、解题的关键三、解答题1、【分析】根据平行四边形的性质可得,勾股定理求得,进而求得【详解】解:四边形是平行四边形 ABAC,在中,在中,【点睛】本题考查了平行四边形的性质,勾股定理,熟练掌握平行四边形的性质是解题的关键2、(1)见解析;(2)CE=【分析】(1)根据平行线的性质及折叠性质证明FAC=FCA即可(2)由题意可得,根据勾股定理求出AC=5,进而求出BC=2,设CE= x然后在Rt中,根据勾股定理EC2=2+2列方程求解即可;【详解】解:(1)如图1,四边形ABCD是矩形,ADBC,FAC=ACB,ACB=ACF,FAC=FCA,FA=FC (2),如图2, 设CE= x,四边形ABC
19、D是矩形,B=90,AC2=AB2+BC2= 32+42=25,AC=5,由折叠可知:,=5-3=2,在Rt中,EC2=2+2x2=(4-x)2+22,x=,CE=【点睛】本题属于矩形折叠问题,考查了矩形的性质,勾股定理,直角三角形的判定和性质,等腰三角形的判定和性质等知识,解题的关键是学会利用参数构建方程解决问题,属于中考常考题型3、(1)MN=AM+CN;(2)MN=AM+CN,理由见解析;(3)MN=CN-AM,理由见解析【分析】(1)把ABM绕点B顺时针旋转使AB边与BC边重合,则AM=CM,BM=BM,A=BCM,ABM=MBC,可得到点M、C、N三点共线,再由MBN=45,可得MB
20、N=MBN,从而证得NBMNBM,即可求解;(2)把ABM绕点B顺时针旋转使AB边与BC边重合,则AM=CM,BM=BM,A=BCM,ABM=MBC,由A+C180,可得点M、C、N三点共线,再由MBNABC,可得到MBN=MBN,从而证得NBMNBM,即可求解;(3)在NC上截取C M=AM,连接B M,由ABC+ADC180,可得BAM=C,再由ABBC,可证得ABMCB M,从而得到AM=C M,BM=B M,ABM=CB M,进而得到MA M=ABC,再由MBNABC,可得MBNMBN,从而得到NBMNBM,即可求解【详解】解:(1)如图,把ABM绕点B顺时针旋转使AB边与BC边重合,
21、则AM=CM,BM=BM,A=BCM,ABM=MBC,在正方形ABCD中,A=BCD=ABC=90,AB=BC ,BCM+BCD=180,点M、C、N三点共线,MBN=45,ABM+CBN=45,MBN=MBC+CBN=ABM+CBN=45,即MBN=MBN,BN=BN,NBMNBM,MN= MN,MN= MC+CN,MN= MC+CN=AM+CN;(2)MN=AM+CN;理由如下:如图,把ABM绕点B顺时针旋转使AB边与BC边重合,则AM=CM,BM=BM,A=BCM,ABM=MBC,A+C180,BCM+BCD=180,点M、C、N三点共线,MBNABC,ABM+CBN=ABCMBN,CB
22、N+MBC =MBN,即MBN=MBN,BN=BN,NBMNBM,MN= MN,MN= MC+CN,MN= MC+CN=AM+CN;(3)MN=CN-AM,理由如下:如图,在NC上截取C M=AM,连接B M,在四边形ABCD中,ABC+ADC180,C+BAD=180,BAM+BAD=180,BAM=C,ABBC,ABMCB M,AM=C M,BM=B M,ABM=CB M,MA M=ABC,MBNABC,MBNMA M=MBN,BN=BN,NBMNBM,MN= MN,MN=CN-C M, MN=CN-AM故答案是:MN=CN-AM【点睛】本题主要考查了正方形的性质,全等三角形的性质和判定,
23、图形的旋转,根据题意做适当辅助线,得到全等三角形是解题的关键4、(1);(2)t的值为或;(3)S=-t2+20t或S=;(4)t=2s或s【分析】(1)由勾股定理可求解;由直角三角形的性质可求解;(2)分两种情况讨论,由QM的长度为10,列出方程可求解;(3)分两种情况讨论,由面积公式可求解;(4)分两种情况讨论,由含30角的直角三角形三边的比值可求解【详解】解:(1)ACB=90,B30,AB20,AC=10,BC=;PQAB,BQP=90,B=30,PQ=,由题意得:BP=2t,PQ=t,故答案为:t;(2)在RtPQB中,BQ=3t,当点M与点Q相遇,20=AM+BQ=4t+3t,t=
24、,当0t时,MQ=AB-AM-BQ,20-4t-3t=10,t=,当t=5时,MQ=AM+BQ-AB,4t+3t-20=10,t=,综上所述:当QM的长度为10时,t的值为或;(3)当0t时,S=PQMQ=t(20-7t)=-t2+20t;当t5时,如图,四边形PQMN是矩形,PN=QM=7t-20,PQ=t,B=30,MEBEBM=12,BM=20-4t,ME=,S=;(4)如图,若NQAC,NQBC,B=MQN=30,MNNQMQ=12,MQ=20-7t,MN=PQ=,t=2,如图,若NQBC,NQAC,A=BQN=90-B=60,PQN=90-BQN=30,PNNQPQ=12,PN=MQ
25、=7t-20,PQ=,t=,综上所述:当t=2s或s时,过点Q和点N的直线垂直于RtABC的一边【点睛】本题考查了矩形的性质,勾股定理,平行线的性质等知识,利用分类讨论思想解决问题是本题的关键5、4【分析】分别过点E、C作EH、CG垂直AB,垂足为点H、G,则CG是斜边AB上的高;在菱形ABEF中, 利用平行线的性质不难得到CG=EH;菱形的对角相等,四条边相等,联系含30角的直角三角形的性质求出EH,问题即可解答。【详解】解:如图,分别过作垂足为点 四边形ABEF为菱形,在中, ,根据题意,根据平行线间的距离处处相等, .答:的面积为.【点睛】本题考查了菱形的性质,直角三角形的性质,平行线间的距离及三角形面积的计算,正确利用菱形的四边相等及直角三角形中,30角所对直角边是斜边的一半是解题的关键