《难点解析京改版八年级数学下册第十五章四边形专题练习试题(无超纲).docx》由会员分享,可在线阅读,更多相关《难点解析京改版八年级数学下册第十五章四边形专题练习试题(无超纲).docx(35页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、京改版八年级数学下册第十五章四边形专题练习 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、下列图形中,既是中心对称图形又是轴对称图形的有几个()A1个B2个C3个D4个2、下列图案中,是中心对称图形的是(
2、 )ABCD3、如图,在平面直角坐标系中,矩形OABC的点A和点C分别落在x轴和y轴正半轴上,AO4,直线l:y3x+2经过点C,将直线l向下平移m个单位,设直线可将矩形OABC的面积平分,则m的值为()A7B6C4D84、如图,菱形中,以为圆心,长为半径画,点为菱形内一点,连,若,且,则图中阴影部分的面积为( )ABCD5、下列图形中,既是轴对称图形,又是中心对称图形的是( )ABCD6、如图,已知在正方形ABCD中,厘米,点E在边AB上,且厘米,如果点P在线段BC上以2厘米/秒的速度由B点向C点运动,同时,点Q在线段CD上以a厘米/秒的速度由C点向D点运动,设运动时间为t秒若存在a与t的值
3、,使与全等时,则t的值为( )A2B2或1.5C2.5D2.5或27、下列说法中,正确的是( )A若,则B901.5C过六边形的每一个顶点有4条对角线D疫情防控期间,要掌握进入校园人员的体温是否正常,可采用抽样调查8、如图,在中,AD平分,E是AD中点,若,则CE的长为( )ABCD9、如图,在ABC中,点E,F分别是AB,AC的中点已知B55,则AEF的度数是()A75B60C55D4010、如图,A+B+C+D+E+F的度数为()A180B360C540D不能确定第卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、在平面直角坐标系中,点(2,5)关于原点对称的点的坐标是
4、_2、如图是中国古代建筑中的一个正六边形的窗户,则它的内角和为 _3、如图,在矩形ABCD中,对角线AC,BD相交于O,EF过点O分别交AB,CD于E,F,已知AB8cm,AD5cm,那么图中阴影部分面积为_cm24、如图,在四边形中,分别是的中点,分别以为直径作半圆,这两个半圆面积的和为,则的长为_5、如图,在矩形ABCD中,AD3AB,点G,H分别在AD,BC上,连BG,DH,且,当_时,四边形BHDG为菱形三、解答题(5小题,每小题10分,共计50分)1、如图,在正方形ABCD中,DFAE,AE与DF相交于点O(1)求证:DAFABE;(2)求AOD的度数2、已知长方形ABCO,O为坐标
5、原点,B的坐标为(8,6),点A,C分别在坐标轴上,P是线段BC上的动点,设PCm(1)已知点D在第一象限且是直线y2x6上的一点,设D点横坐标为n,则D点纵坐标可用含n的代数式表示为 ,此时若APD是等腰直角三角形,求点D的坐标;(2)直线y2xb过点(3,0),请问在该直线上,是否存在第一象限的点D使APD是等腰直角三角形?若存在,请直接写出这些点的坐标,若不存在,请说明理由3、已知:如图,在中,求证:互相平分如图,将矩形纸片ABCD沿对角线AC折叠,使点B落在点E处,AE交CD于点F,且已知AB=8,BC=4(1)判断ACF的形状,并说明理由;(2)求ACF的面积;4、ABC和GEF都是
6、等边三角形问题背景:如图1,点E与点C重合且B、C、G三点共线此时BFC可以看作是AGC经过平移、轴对称或旋转得到请直接写出得到BFC的过程迁移应用:如图2,点E为AC边上一点(不与点A,C重合),点F为ABC中线CD上一点,延长GF交BC于点H,求证:联系拓展:如图3,AB12,点D,E分别为AB、AC的中点,M为线段BD上靠近点B的三等分点,点F在射线DC上运动(E、F、G三点按顺时针排列)当最小时,则MDG的面积为_5、如图,四边形ABCD是平行四边形,且分别交对角线于点E、F,连接ED、BF(1)求证:四边形BEDF是平行四边形;(2)若AEEF,请直接写出图2中面积等于四边形ABCD
7、的面积的的所有三角形-参考答案-一、单选题1、A【分析】根据轴对称图形与中心对称图形的概念求解【详解】解:第一个图形既不是轴对称图形,也不是中心对称图形,不符合题意;第二个图形是轴对称图形,不是中心对称图形,不符合题意;第三个图形是轴对称图形,不是中心对称图形,不符合题意;第四个图形既是轴对称图形,也是中心对称图形,符合题意;既是中心对称图形又是轴对称图形的只有1个,故选:A【点睛】本题主要考查了中心对称图形与轴对称图形的概念轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合2、B【分析】由题意依据一个图形绕某一点旋转180,如果旋转后
8、的图形能够与原来的图形重合,那么这个图形就叫做中心对称图形对各选项分析判断即可【详解】解:A、C、D都是轴对称图形,只有B选项是中心对称图形.故选:B.【点睛】本题考查中心对称图形的识别,注意掌握中心对称图形是要寻找对称中心,旋转180度后与原图重合3、A【分析】如图所示,连接AC,OB交于点D,先求出C和A的坐标,然后根据矩形的性质得到D是AC的中点,从而求出D点坐标为(2,1),再由当直线经过点D时,可将矩形OABC的面积平分,进行求解即可【详解】解:如图所示,连接AC,OB交于点D,C是直线与y轴的交点,点C的坐标为(0,2),OA=4,A点坐标为(4,0),四边形OABC是矩形,D是A
9、C的中点,D点坐标为(2,1),当直线经过点D时,可将矩形OABC的面积平分,由题意得平移后的直线解析式为,故选A【点睛】本题主要考查了一次函数与几何综合,一次函数的平移,矩形的性质,解题的关键在于能够熟知过矩形中心的直线平分矩形面积4、C【分析】过点P作交于点M,由菱形得,由,得,故可得,根据SAS证明,求出,即可求出【详解】如图,过点P作交于点M,四边形ABCD是菱形,在与中,在中,即,解得:,故选:C【点睛】此题主要考查了菱形的性质以及求不规则图形的面积等知识,掌握扇形的面积公式是解答此题的关键5、B【详解】解:A、是轴对称图形,不是中心对称图形,故本选项不符合题意;B、既是轴对称图形,
10、又是中心对称图形,故本选项符合题意;C、不是轴对称图形,是中心对称图形,故本选项不符合题意;D、不是轴对称图形,是中心对称图形,故本选项不符合题意;故选:B【点睛】本题考查了轴对称图形和中心对称图形,熟记中心对称图形的定义(在平面内,把一个图形绕某点旋转,如果旋转后的图形与另一个图形重合,那么这两个图形互为中心对称图形)和轴对称图形的定义(如果一个图形沿一条直线折叠,直线两旁的部分能够完全重合,那么这个图形叫做轴对称图形)是解题关键6、D【分析】根据题意分两种情况讨论若BPECQP,则BP=CQ,BE=CP;若BPECPQ,则BP=CP=5厘米,BE=CQ=6厘米进行求解即可.【详解】解:当,
11、即点Q的运动速度与点P的运动速度都是2厘米/秒,若BPECQP,则BP=CQ,BE=CP,AB=BC=10厘米,AE=4厘米,BE=CP=6厘米,BP=10-6=4厘米,运动时间t=42=2(秒);当,即点Q的运动速度与点P的运动速度不相等,BPCQ,B=C=90,要使BPE与OQP全等,只要BP=PC=5厘米,CQ=BE=6厘米,即可点P,Q运动的时间t=(秒).综上t的值为2.5或2.故选:D【点睛】本题主要考查正方形的性质以及全等三角形的判定,解决问题的关键是掌握正方形的四条边都相等,四个角都是直角;两边及其夹角分别对应相等的两个三角形全等同时要注意分类思想的运用7、B【分析】由等式的基
12、本性质可判断A,由 可判断B,由过边形的一个顶点可作条对角线可判断C,由全面调查与抽样调查的含义可判断D,从而可得答案.【详解】解:若,则故A不符合题意;90故B符合题意;过六边形的每一个顶点有3条对角线,故C不符合题意;疫情防控期间,要掌握进入校园人员的体温是否正常,事关重大,一定采用全面调查,故D不符合题意;故选:B【点睛】本题考查的是等式的基本性质,角度的换算,多边形的对角线问题,全面调查与抽样调查的含义,掌握以上基础知识是解本题的关键.8、B【分析】根据三角形内角和定理求出BAC,根据角平分线的定义DAB=B,求出AD,根据直角三角形的性质解答即可【详解】解:ACB=90,B=30,B
13、AC=90-30=60,AD平分BAC,DAB=BAC=30,DAB=B,AD=BD=a,在RtACB中,E是AD中点,CE=AD=,故选: B【点睛】本题考查的是直角三角形的性质、角平分线的定义,掌握直角三角形斜边上的中线是斜边的一半是解题的关键9、C【分析】证EF是ABC的中位线,得EFBC,再由平行线的性质即可求解【详解】解:点E,F分别是AB,AC的中点,EF是ABC的中位线,EFBC,AEF=B=55,故选:C【点睛】本题考查了三角形中位线定理以及平行线的性质;熟练掌握三角形中位线定理,证出EFBC是解题的关键10、B【分析】设BE与DF交于点M,BE与AC交于点N,根据三角形的外角
14、性质,可得 ,再根据四边形的内角和等于360,即可求解【详解】解:设BE与DF交于点M,BE与AC交于点N, , , 故选:B【点睛】本题主要考查了三角形的外角性质,多边形的内角和,熟练掌握三角形的一个外角等于与它不相邻的两个内角的和;四边形的内角和等于360是解题的关键二、填空题1、(2,-5)【分析】根据平面直角坐标系中任意一点P(x,y),关于原点的对称点是(-x,-y)【详解】解:根据中心对称的性质,得点P(-2,5)关于原点对称点的点的坐标是(2,-5)故答案为:(2,-5)【点睛】本题主要考查了关于原点对称的点坐标的关系,是需要识记的基本问题记忆方法是结合平面直角坐标系的图形记忆,
15、比较简单2、720720度【分析】根据多边形内角和可直接进行求解【详解】解:由题意得:该正六边形的内角和为;故答案为720【点睛】本题主要考查多边形内角和,熟练掌握多边形内角和公式是解题的关键3、10【分析】利用矩形性质,求证,将阴影部分的面积转为的面积,最后利用中线平分三角形的面积,求出的面积,即可得到阴影部分的面积【详解】解:四边形为矩形, , 在与中, 阴影部分的面积最后转化为了的面积,中, 平分, 阴影部分的面积:,故答案为:10【点睛】本题主要是考查了矩形的性质以全等三角形的判定与性质以及中线平分三角形面积,熟练利用矩形性质,证明三角形全等,将阴影部分面积转化为其他图形的面积,这是解
16、决本题的关键4、4【分析】根据题意连接BD,取BD的中点M,连接EM、FM,EM交BC于N,根据三角形的中位线定理推出EM=AB,FM=CD,EMAB,FMCD,推出ABC=ENC,MFN=C,求出EMF=90,根据勾股定理求出ME2+FM2=EF2,根据圆的面积公式求出阴影部分的面积即可【详解】解:连接BD,取BD的中点M,连接EM、FM,延长EM交BC于N,ABC+DCB=90,E、F、M分别是AD、BC、BD的中点,EM=AB,FM=CD,EMAB,FMCD,ABC=ENC,MFN=C,MNF+MFN=90,NMF=180-90=90,EMF=90,由勾股定理得:ME2+FM2=EF2,
17、阴影部分的面积是:(ME2+FM2)=EF2=8,EF=4.故答案为:4【点睛】本题主要考查对勾股定理,三角形的内角和定理,多边形的内角和定理,三角形的中位线定理,圆的面积,平行线的性质,面积与等积变形等知识点的理解和掌握,能正确作辅助线并求出ME2+FM2的值是解答此题的关键5、【分析】设 则再利用矩形的性质建立方程求解 从而可得答案.【详解】解: 四边形BHDG为菱形, 设 AD3AB,设 则 矩形ABCD, 解得: 故答案为:【点睛】本题考查的是勾股定理的应用,矩形的性质,菱形的性质,利用图形的性质建立方程确定之间的关系是解本题的关键.三、解答题1、(1)见解析;(2)90【分析】(1)
18、利用正方形的性质得出AD=AB,DAB=ABC=90,再证明RtDAFRtABE即可得出结论;(2)利用(1)的结论得出ADF=BAE,进而求出BAE+DFA=90,最后用三角形的内角和定理即可得出结论【详解】(1)证明:四边形ABCD是正方形,DABABC90,ADAB,在RtDAF和RtABE中,RtDAFRtABE(HL),即DAFABE(2)解:由(1)知,DAFABE,ADFBAE,ADF+DFABAE+DFADAB90,AOD180(BAE+DFA)90【点睛】本题主要考查了正方形的性质,全等三角形的判定和性质,三角形的内角和定理,判断出RtDAFRtABE是解本题的关键2、(1)
19、点D(4,14);(2)存在第一象限的点D使APD是等腰直角三角形,点D的坐标或【分析】(1)过点D作DEy轴于E,PFy轴于F,设D点横坐标为n,点D在第一象限且是直线y2x6上的一点,可得点D(n,2n+6),根据APD是等腰直角三角形,可得EDA=FAP,可证EDAFAP(AAS),可得AE=PF,ED=FA,再证四边形AFPB为矩形,得出点D(n,14),根据点D在直线y2x6上,求出n=4即可;(2)直线y2xb过点(3,0),求出b =-6,设点D(x, 2x-6),分三种情况当ADP=90,AD=DP,ADP为等腰直角三角形,证明EDAFPD(AAS),再证四边形OCFE为矩形,
20、EF=OC=8,得出DE+DF=x+2x-14=8;当APD=90,AP=DP,ADP为等腰直角三角形,先证ABPPFD(AAS),得出CF=CB+PF-PB=6+8-(x-8)=22-x=2x-6;当PAD=90,AP=AD,ADP为等腰直角三角形,先证四边形AFPB为矩形,得出PF=AB=8,再证APFDAE(AAS),得出求解方程即可【详解】解:(1)过点D作DEy轴于E,PFy轴于F,设D点横坐标为n,点D在第一象限且是直线y2x6上的一点,x=n,y2n6,点D(n,2n+6),APD是等腰直角三角形,DA=AP,DAP=90,DAE+FAP=180-DAP=90,DEy轴,PFy轴
21、,DEA=AFP=90,EDA+DAE=90,EDA=FAP,在EDA和FAP中,EDAFAP(AAS),AE=PF,ED=FA,四边形OABC为矩形,B的坐标为(8,6),AB=OC=8,OA=BC=6,FAB=ABP=90,AFP=90,四边形AFPB为矩形,PF=AB=8,EA=FP=8,OE=OA+AE=6+8=14,点D(n,14),点D在直线y2x6上,142n6,,n=4,点D(4,14);(2)直线y2xb过点(3,0),06b,b =-6,直线y2x-6,设点D(x, 2x-6),过点D作EFy轴,交y轴于E,交CB延长线于F,要使ADP为等腰直角三角形,当ADP=90,AD
22、=DP,ADP为等腰直角三角形,ADE+FDP=180-ADP=90,DEy轴,PFy轴,DEA=AFP=90,EDA+DAE=90,EAD=FDP,在EDA和FPD中,EDAFPD(AAS),AE=DF=2x-6-8=2x-14,ED=FP=x,四边形OABC为矩形,AB=OC=8,OA=BC=6,OCF=90,四边形OCFE为矩形,EF=OC=8,DE+DF=x+2x-14=8,解得x=,点D;当APD=90,AP=DP,ADP为等腰直角三角形,APB+DPF=90,过D作DF射线CB于F,DFP=90,四边形OABC为矩形,AB=OC=8,OA=CB=6,ABP=90,BAP+APB=9
23、0,BAP=FPD,在ABP和PFD中,ABPPFD(AAS),BP=FD=x-8,AB=PF=8,CF=CB+PF-PB=6+8-(x-8)=22-x=2x-6,解得x=,点D;当PAD=90,AP=AD,ADP为等腰直角三角形,EAD +PAF=90,过D作DEy轴于E,过P作PFy轴于F,DEA=PFA=90,FAP+FPA=90,FPA=EAD,四边形OABC为矩形,AB=OC=8,OA=CB=6,ABP=BAO=90,PFA=90,四边形AFPB为矩形,PF=AB=8,在APF和DAE中,APFDAE(AAS),FP=AE=8,AF=DE=6-m,OE=OA+AE=6+8=14,解得
24、:,PCm0,AF=6-m610,此种情况不成立;综合存在第一象限的点D使APD是等腰直角三角形,点D的坐标或【点睛】本题考查等腰直角三角形先证,三角形全等判定与性质,待定系数法求一次函数解析式,分类讨论思想,一次函数图像上点的特征,矩形的判定与性质,掌握等腰直角三角形先证,三角形全等判定与性质,待定系数法求一次函数解析式,分类讨论思想,一次函数图像上点的特征,矩形的判定与性质是解题关键3、证明见解析【分析】连接,由三角形中位线定理可得,可证四边形ADEF是平行四边形,由平行四边形的性质可得AE,DF互相平分;【详解】证明:连接,ADDB,BEEC,BEEC,AFFC,四边形ADEF是平行四边
25、形,AE,DF互相平分【点睛】本题考查了平行四边形的性质判定和性质及三角形中位线定理,灵活运用这些性质是解题的关键(1)ACF是等腰三角形,理由见解析;(2)10;(3)4、(1)以点C为旋转中心将逆时针旋转就得到;(2)见解析;(3)【分析】(1)只需要利用SAS证明BCFACG即可得到答案;(2)法一:以为边作,与的延长线交于点K,如图,先证明,然后证明, 得到,则,过点F作FMBC于M,求出,即可推出,则,即:;法二:过F作,先证明FCNFCM得到CM=CN,利用勾股定理和含30度角的直角三角形的性质求出,再证明 得到,则;(3)如图3-1所示,连接,GM,AG,先证明ADE是等边三角形
26、,得到DE=AE,即可证明得到,即点G在的角平分线所在直线上运动过G作,则,最小即是最小,故当M、G、P三点共线时,最小;如图3-2所示,过点G作GQAB于Q,连接DG,求出DM和QG的长即可求解【详解】(1)ABC和GEF都是等边三角形,BC=AC,CF=CG,ACB=FCG=60,ACB+ACF=FCG+ACF,FCB=GCA,BCFACG(SAS),BFC可以看作是AGC绕点C逆时针旋转60度所得;(2)法一:证明:以为边作,与的延长线交于点K,如图,和均为等边三角形,GFE=60,EFH+ACB=180, 是等边的中线,在与中, ,过点F作FMBC于M,KM=CM,K=30,即:;法二
27、证明:过F作,是等边的中线,FCNFCM(AAS),FC=2FN,CM=CN,同法一,在与中, ,;(3)如图3-1所示,连接,GM,AG,D,E分别是AB,AC的中点,DE是ABC的中位线,CDAB,DEBC,CDA=90,ADE=ABC=60,AED=ACB=60,ADE是等边三角形,FDE=30,DE=AE,GEF是等边三角形,EF=EG,GEF=60,AEG=AED+DEG=FEG+DEG=FED,即点G在的角平分线所在直线上运动过G作,则,最小即是最小,当M、G、P三点共线时,最小如图3-2所示,过点G作GQAB于Q,连接DG,QG=PG,MAP=60,MPA=90,AMP=30,A
28、M=2AP,D是AB的中点,AB=12,AD=BD=6,M是BD靠近B点的三等分点,MD=4,AM=10,AP=5,又PAG=30,AG=2GP,【点睛】本题主要考查了全等三角形的性质与判定,等边三角形的性质与判定,含30度角的直角三角形的性,勾股定理,解题的关键在于能够正确作出辅助线求解5、(1)证明见解析;(2)【分析】(1)先证明再证明可得从而有 于是可得结论;(2)先证明再证明,从而可得结论.【详解】证明:(1) 四边形ABCD是平行四边形, ,BEF=DFE, 四边形BEDF是平行四边形.(2)由(1)得: 四边形BEDF是平行四边形, 四边形ABCD是平行四边形,SADF=SDEC=SABF=SBEC=13SABCD.【点睛】本题考查的是平行四边形的判定与性质,熟练的运用一组对边平行且相等的四边形是平行四边形是证明的关键,第(2)问先确定面积为平行四边形ABCD的的三角形是解题的关键.