《强化训练北师大版八年级数学下册第三章图形的平移与旋转综合测试试卷(含答案详解).docx》由会员分享,可在线阅读,更多相关《强化训练北师大版八年级数学下册第三章图形的平移与旋转综合测试试卷(含答案详解).docx(25页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、八年级数学下册第三章图形的平移与旋转综合测试 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、下列交通标志中既是中心对称图形,又是轴对称图形的是( )ABCD2、下列图形既是轴对称图形又是中心对称图形的是(
2、)ABCD3、如图,将OAB绕点O逆时针旋转80得到OCD,若A的度数为110,D的度数为40,则AOD的度数是( )A50B60C40D304、下列图形中,是中心对称图形的是()ABCD5、如图,将ABC绕顶点C逆时针旋转角度得到ABC,且点B刚好落在AB上若A26,BCA44,则等于( )A37B38C39D406、如图,矩形ABCD的边BC在x轴上,点A在第二象限,点D在第一象限,AB ,OD4,将矩形ABCD绕点O顺时针旋转,使点D落在x轴的正半轴上,则点C对应点的坐标是( )A(,)B(,)C(,)D(,)7、直角坐标系中,点A(-3,4)与点B(3,-4)关于( )A原点中心对称B
3、轴轴对称C轴轴对称D以上都不对8、在平面直角坐标系xOy中,点A(2,3)关于原点对称的点的坐标是( )A(2,3)B(2,3)C(3,2)D(2,3)9、如图,在RtABC中,ABC90,AB6,BC8把ABC绕点A逆时针方向旋转到ABC,点B恰好落在AC边上,则CC()A10B2C2D410、下列图形既是中心对称图形,又是轴对称图形的是( )ABCD第卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、已知矩形ABCD中,AD5,AB3,现将边AD绕它的一个端点旋转,当另一端点怡好落在边BC所在直线的点E处时,线段DE的长度为 _2、如图,在平面直角坐标系中,A(0,1)
4、,B(1,0),对RtABO沿轴依次作旋转变换,分别得到1,2,3,4,则20的直角顶点横坐标是_ 3、在平面直角坐标系中,点P(-3,7)关于原点对称的点的坐标是_4、如图,将直角三角形ABC沿BC方向平移得到直角三角形DEF,其中AB6,BE3,DM2,则阴影部分的面积是_5、正方形ABCD在坐标系中的位置如图所示A(0,3),B(2,4),C(3,2),D(1,10)将正方形ABCD绕D点旋转90后,点B到达的位置坐标为_三、解答题(5小题,每小题10分,共计50分)1、定义:两个顶角相等且顶角顶点重合的等腰三角形组合称为”相似等腰组”如图1,等腰ABC和等腰ADE即为“相似等腰组”(1
5、)如图2,将上述“相似等腰组”中的ADE绕着点A逆时针旋转一定角度,判断ABD和ACE是否全等,并说明理由(2)如图3,等腰ABC和等腰ADE是“相似等腰组”,且BAC90,DC和AE相交于点O,判断DC和BE的位置及大小关系,并说明理由(3)如图4,在等边ABC中,D是三角形内部一点,且AD,BD2,DC,求ABC的面积2、如图所示,平移ABC,使点A移动到点A,画出平移后的ABC3、(阅读理解)射线OC是AOB内部的一条射线,若COABOC,则称射线OC是射线OA在AOB内的一条“友好线”如图1,AOB60,AOC20,则AOCBOC,所以射线OC是射线OA在AOB内的一条“友好线”(解决
6、问题)(1)在图1中,若作BOC的平分线OD,则射线OD 射线OB在AOB内的一条“友好线”;(填“是”或“不是”)(2)如图2,AOB的度数为n,射线OM是射线OB在AOB内的一条“友好线”,ON平分AOB,则MON的度数为 ;(用含n的代数式表示)(3)如图3,射线OB从与射线OA重合的位置出发,绕点O以每秒3的速度逆时针旋转;同时,射线OC从与射线OA的反向延长线重合的位置出发,绕点O以每秒5的速度顺时针旋转,当射线OC与射线OA重合时,运动停止问:当运动时间为多少秒时,射线OA、OB、OC中恰好有一条射线是余下两条射线中某条射线在余下两条射线所组成的角内的一条“友好线”?4、如图1,我
7、们把一副两个三角板如图摆放在一起,其中OA,OD在一条直线上,B45,C30,固定三角板ODC,将三角板OAB绕点O按顺时针方向旋转,记旋转角AOA(0180)(1)在旋转过程中,当为 度时,ABOC,当为 度时,ABCD;(2)如图2,将图1中的OAB以点O为旋转中心旋转到OAB的位置,求当为多少度时,OB平分COD;拓展应用:(3)当90120时,连接AD,利用图3探究BAD+BOC+ADC值的大小变化情况,并说明理由5、如图,在ABC中,BAC120,将ABC绕点C逆时针旋转得到DEC,点A,B的对应点分别为D,E,连接AD当点A,D,E在同一条直线上时,求证:ADC是等边三角形-参考答
8、案-一、单选题1、C【分析】结合选项根据轴对称图形(把一个图形沿着某一条直线折叠,如果它能够与另一个图形完全重合,称这两个图形为轴对称)与中心对称图形(指把一个图形绕着某一点旋转,如果它能够与另一个图形重合,那么就说这两个图形关于这个点对称或中心对称)的概念求解即可【详解】解:A、是轴对称图形,不是中心对称图形;B、是轴对称图形,不是中心对称图形;C、是轴对称图形,也是中心对称图形;D、不是轴对称图形,也不是中心对称图形故选:C【点睛】题目主要考查轴对称和中心对称图形的识别,深刻理解轴对称与中心对称图形的概念是解题关键2、C【详解】解:A不是轴对称图形,不是中心对称图形,故本选项不符合题意;B
9、是轴对称图形,不是中心对称图形,故本选项不符合题意;C既是轴对称图形,又是中心对称图形,故本选项符合题意;D不是轴对称图形,不是中心对称图形,故本选项不符合题意故选:C【点睛】本题主要考查了轴对称图形和中心对称图形的概念,解题的关键是熟练掌握把一个图形绕某一点旋转180,如果旋转后的图形能够与原来的图形重合,那么这个图形就叫做中心对称图形;如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形3、A【分析】根据旋转的性质求解再利用三角形的内角和定理求解再利用角的和差关系可得答案.【详解】解: 将OAB绕点O逆时针旋转80得到OCD, A的度数为110,D的度数为40,
10、故选A【点睛】本题考查的是三角形的内角和定理的应用,旋转的性质,掌握“旋转前后的对应角相等”是解本题的关键.4、D【分析】把一个图形绕某一点旋转180,如果旋转后的图形能够与原来的图形重合,那么这个图形就叫做中心对称图形【详解】A、不是中心对称图形,故此选项不合题意;B、不是中心对称图形,故此选项不合题意;C、不是中心对称图形,故此选项不合题意;D、是中心对称图形,故此选项符合题意;故选:D【点睛】本题考查了中心对称图形的概念,理解概念并知道一些常见的中心对称图形是关键5、D【分析】由题意根据ABC绕顶点C逆时针选择角度得到ABC,且点B刚好落在AB上A=26,BCA=44,可以求得CBB和C
11、BB的度数,然后根据三角形内角和即可得到BCB的度数,从而可以得到的度数【详解】解:ABC绕顶点C逆时针选择角度得到ABC,且点B刚好落在AB上,A=26,BCA=44,A=A=26,CB=CB,CBB=A+BCA=70,CB=CB,CBB=CBB,CBB=70,BCB=180-70-70=40.即等于40,故选:D【点睛】本题考查三角形的旋转问题和三角形内角和,解答本题的关键是明确题意,找出所求问题需要的条件,利用数形结合的思想解答6、B【分析】由矩形可知AB=CD=,再由勾股定理可知OC=2,则C点坐标为(2,0),D点坐标为(2,),旋转后D点坐标为(4,0),则C点坐标为(1,)【详解
12、】四边形ABCD为矩形AB=CD=,DOC=60在中有则C点坐标为(2,0),D点坐标为(2,)又旋转后D点落在x轴的正半轴上可看作矩形ABCD中绕点O顺时针旋转了60得到如图所示,过C作y轴平行线交x轴于点M其中DOC=DOC=60,OMC=90,OC=OC=2OM=1,MC=C坐标为(1,)故选:B【点睛】本题考查了旋转的性质,得出矩形ABCD绕点O顺时针旋转了60是解题的关键7、A【分析】观察点A与点B的坐标,依据关于原点中心对称的点,横坐标与纵坐标都互为相反数可得答案【详解】根据题意,易得点(-3,4)与(3,-4)的横、纵坐标互为相反数,则这两点关于原点中心对称故选A【点睛】本题考查
13、在平面直角坐标系中,关于原点中心对称的两点的坐标之间的关系掌握关于原点对称的点,横坐标与纵坐标都互为相反数是解答本题的关键8、D【分析】根据“关于原点对称的两个点,横坐标、纵坐标分别互为相反数”即可求得【详解】解:点A(2,3)关于原点对称的点的坐标是故选D【点睛】本题考查了关于原点对称的点的坐标特征,掌握“关于原点对称的两个点,横坐标、纵坐标分别互为相反数”是解题的关键9、D【分析】首先运用勾股定理求出AC的长度,然后结合旋转的性质得到AB= AB,BC= BC,从而求出BC,即可在RtBCC中利用勾股定理求解【详解】解:在RtABC中,AB6,BC8,由旋转性质可知,AB= AB=6,BC
14、= BC=8,BC=10-6=4,在RtBCC中,故选:D【点睛】本题考查勾股定理,以及旋转的性质,掌握旋转变化的基本性质,熟练运用勾股定理求解是解题关键10、D【分析】一个图形绕着某固定点旋转180度后能够与原来的图形重合,则称这个图形是中心对称图形,这个固定点叫做对称中心;如果一个图形沿着某条直线对折后,直线两旁的部分能够重合,则称这个图形是轴对称图形,这条直线叫做对称轴;根据这两个概念逐项判断即可【详解】A、既不是中心对称图形,也不是轴对称图形,故不符合题意;B、是轴对称图形,但不是中心对称图形,故不符合题意;C、是中心对称图形,但不是轴对称图形,故不符合题意;D、既是中心对称图形,也是
15、轴对称图形,故符合题意【点睛】本题考查了中心对称图形与轴对称图形的识别,掌握它们的概念是关键二、填空题1、2或3或5【分析】分两种情形:AD=AE,DE=DA,利用勾股定理分别求解即可【详解】解:如图,四边形ABCD是矩形,AB=CD=3,AD=BC=5,ABC=DCB=90,当AD=5时,=4,DE1=2,=24+1=9,DE2=3,当DE=DA=5时,DE=5,综上所述,满足条件的DE的值为2或3或5故答案为:2或3或5【点睛】本题考查了旋转变换,矩形的性质,等腰三角形的性质,勾股定理等知识,解题的关键是学会用分类讨论的思想思考问题,属于中考常考题型2、【分析】先利用勾股定理计算出AB,从
16、而得到ABC的周长为,根据旋转变换可得OAB的旋转变换为每3次一个循环,由于203=62,20与2状态相同,然后计算即可得到20的直角顶点横坐标【详解】解:A(0,1),B(1,0),OA=1,OB=1,,ABO的周长为,如图所示,作HNx轴,第1次的直角顶点的横坐标为0,第2次的直角顶点的横坐标为(三线合一),第3次的直角顶点的横坐标为,以后每连续3次后与原来的状态一样,203=62,20与2状态相同,其横坐标为:故答案为:【点睛】本题考查了坐标与图形变化-旋转:图形或点旋转之后要结合旋转的角度和图形的特殊性质来求出旋转后的点的坐标常见的是旋转特殊角度如:30,45,60,90,180解决本
17、题的关键是确定循环的次数,属于中考选择题中的压轴题3、 (3,-7)【分析】根据关于原点对称的点的横坐标互为相反数,纵坐标互为相反数,可得答案【详解】解:在平面直角坐标系中,点P(-3,7)关于原点对称的点的坐标是(3,-7),故答案为:(3,-7)【点睛】本题考查了关于原点对称的点的坐标,关于原点对称的点的横坐标互为相反数,纵坐标互为相反数4、【分析】由平移的性质可得阴影四边形的面积=梯形ABEM的面积,利用梯形的面积公式计算可求解【详解】解:由平移可得:DE=AB=6,阴影四边形DMCF的面积=梯形ABEM的面积,DM=2,ME=DE-DM=6-2=4,BE=3,梯形ABEM的面积=(ME
18、+AB)BE=(4+6)3=15故答案为:15【点睛】本题主要考查了平移的性质,梯形的面积公式,掌握平移的性质是解题的关键5、 (4,0)或(2,2)【分析】利用网格结构找出点B绕点D旋转90后的位置,然后根据平面直角坐标系写出点的坐标即可【详解】解:如图,点B绕点D旋转90到达点B或B,点B的坐标为(4,0),B(2,2)故答案为:(4,0)或(2,2)【点睛】本题主要考查了坐标与图形变化旋转,解题的关键在于能够利用数形结合的思想进行求解三、解答题1、(1)全等,理由见解析;(2)DCBE,DCBE,理由见解析;(3)【分析】(1)根据“相似等腰组”与全等三角形的判定定理即可证明ABDACE
19、;(2)根据“相似等腰组”与全等三角形的判定定理证明ABEACD,得到DCBE,再根据三角形的内角和得到EAC+DCB90,证明DCBE;(3)将ABD绕点A逆时针旋转60得ACE,证明ADE是等边三角形,再得到CED90,求出AEC150,故CEF=30过点C作CFAE,交AE的延长线于F,在RtCEF中,CFCE1,EF,再利用在RtACF中,求出AC,利用等边三角形的面积公式即可求解【详解】解:(1)全等,理由如下:等腰ABC和等腰ADE为“相似等腰组”,BACDAE,BADBACDAC,CAEEADDAC,BADCAE,在ABD与ACE中,ABDACE(SAS),(2)DCBE,DCB
20、E,理由如下:等腰ABC和等腰ADE为“相似等腰组”,BACDAE90,BAEBAC+EAC,CADEADEAC,BAECAD,在ABE与ACD中,ABEACD(SAS),DCBE,ABEACD,ABE+EBC+ACB90,ACD+EBC+ACB90,EBC+DCB90,DCBE;(3)将ABD绕点A逆时针旋转60得ACE,ADAE,DAE60,CEBD2,ADE是等边三角形,DEAD,AED60,DE2+CE23+47,CD27,DE2+CE2CD2,CED90,AECAED+DEC150,过点C作CFAE,交AE的延长线于F,故CEF=30CFCE1,EF=,在RtACF中,AC,SABC
21、AC2【点睛】此题主要考查全等三角形与等腰三角形的判定与性质证,解题的关键熟知勾股定理、全等三角形的判定与性质、旋转的性质及等边三角形的性质2、见解析【分析】先连接AA然后作AA的平行线,利用平移性质分别确定A、B、C平移后的对应点A、B、C,然后再顺次连接即可【详解】解:如图所示,(1)连接AA,过点B作AA的平行线,在上截取BBAA,则点B就是点B的对应点(2)用同样的方法做出点C的对应点C,连接AB、BC、CA,就得到平移后的三角形ABC【点睛】本题主要考查了平移作图,根据题意确定A、B、C平移后的对应点A、B、C是解答本题的关键3、(1)是;(2)n;(3)或或或30秒【分析】(1)根
22、据“友好线”定义即可作出判断;(2)根据“友好线”定义即可求解;(3)利用分类讨论思想,分四种情况进行计算即可【详解】解:(1)OB是BOC的平分线,BODCOD,COABOC,BODAOD,射线OD是射线OB在AOB内的一条“友好线”(2)射线OM是射线OB在AOB内的一条“友好线”,AOB的度数为n,BOMAOBn,ON平分AOB,BONAOBn,MONBONBOMnnn;(3)设运动时间为x(x36)秒时,射线OA、OB、OC中恰好有一条射线是其余两条射线中某条射线的“友好线”当射线OB是射线OA在AOC内的一条“友好线”时,则AOBCOB,所以3x(1805x3x),解得x(符合题意)
23、,即运动时间为秒时,射线OB是射线OA的“友好线”当射线OB是射线OC在AOC内的一条“友好线”时,则COBAOB,所以1805x3x3x,解得x(符合题意),即运动时间为秒时,射线OB是射线OC的“友好线”当射线OC是射线OB在AOB内的一条“友好线”时,则COBAOC,所以3x+5x180(1805x),解得x(符合题意),即运动时间为秒时,射线OC是射线OB的“友好线”当射线OC是射线OA在AOB内的一条“友好线”时,则AOCCOB,所以1805x(5x+3x180),解得x30(符合题意),即运动时间为30秒时,射线OC是射线OA的“友好线”综上所述,当运动时间为或或或30秒时,符合题
24、意要求【点睛】本题主要考查了角平分线的定义,角的运算,理解新定义,并用数形结合思想解答是解题的关键4、(1)30,90;(2)105;(3)不变,理由见解析【分析】(1)根据题意作出图形,根据所给的条件求解即可;(2)由旋转的性质可得AOBAOB45,由角的数量关系可求解;(3)由可分别表示BAD,BOC,ADC再求和即可【详解】解:(1)当ABOC时,AOC+A180,A90,AOC90,AOA180906030,即30;当ABCD时,则OACD,AOAODC90,即90;故答案为:30;90(2)OAB以O为中心顺时针旋转得到OAB,AOBAOB45,COD60,OB平分COD,DOB30
25、,AOA180DOBAOB1803045105,即当为105时,OB平分COD;(3)不变,理由如下:AOA,BOD18045135,BOC60(135)75,设ADC,ADO90,BOD+ADOBAD+B,即135+90BAD+45,解得BAD180,BAD+BOC+ADC180+75+105【点睛】本题考查了三角板的角度计算,角平分线的定义,旋转的性质,三角形的内角和与外角的性质,平行线的性质,根据题意作出图形是解题的关键5、见解析【分析】根据三角形旋转得出 ,根据点A,D,E在同一条直线上利用邻补角关系求出,根据等边三角形判定定理得出为等边三角形【详解】证明:绕点C逆时针旋转得到, ,点A,D,E在同一条直线上,为等边三角形【点睛】本题考查三角形旋转性质,三点共线,领补角定义,等边三角形判定,掌握三角形旋转性质,三点共线,领补角定义,等边三角形判定是解题关键