《2022年强化训练北师大版八年级数学下册第三章图形的平移与旋转章节测试试卷(含答案详解).docx》由会员分享,可在线阅读,更多相关《2022年强化训练北师大版八年级数学下册第三章图形的平移与旋转章节测试试卷(含答案详解).docx(22页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、八年级数学下册第三章图形的平移与旋转章节测试 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、下列图形中,是中心对称图形的是()ABCD2、如图,E是正方形ABCD中CD边上的点,以点A为中心,把ADE顺时
2、针旋转,得到ABF下列角中,是旋转角的是( )ADAEBEABCDABDDAF3、点M(2,4)先向左平移3个单位长度,再向上平移2个单位长度得到的点的坐标是()A(1,6)B(1,2)C(1,1)D(4,1)4、下列四个图形中既是中心对称图形又是轴对称图形的是( )ABCD5、下列图形中,既是轴对称图形又是中心对称图形的是( )ABCD6、下列四个图形中,为中心对称图形的是()ABCD7、下列图中,既是轴对称图形又是中心对称图形的是()ABCD8、下列图形中,既是轴对称图形又是中心对称图形的是()ABCD9、如图,在ABC中,ACB90,BAC20,将ABC绕点C顺时针旋转90得到ABC,点
3、B的对应点B在边AC上(不与点A,C重合),则AAB的度数为()A20B25C30D4510、下列图案中既是轴对称图形,又是中心对称图形的是( )ABCD第卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、如图,在RtABC中,ACB90,BAC30,BC6,将ABC绕点C顺时针旋转30得到ABC,A、B分别与A、B对应,CA交AB于点M,则CM的长为 _2、正方形ABCD在坐标系中的位置如图所示A(0,3),B(2,4),C(3,2),D(1,10)将正方形ABCD绕D点旋转90后,点B到达的位置坐标为_3、如图,在ABC中,ACB=90,A=30,AB=10如果将ABC
4、绕点C按逆时针旋转到ABC的位置,并且点B恰好落在边AB上,则BB的长为_ 4、如图所示,在ABC中,B40,将ABC绕点A逆时针旋转至ADE的位置,则ADE_5、如图所示,把图中的交通标志图案绕它的中心旋转一定角度后与自身重合,则这个旋转角度至少为 _三、解答题(5小题,每小题10分,共计50分)1、如图,在平面直角坐标系中,直角的三个顶点分别是,(1)将以点为旋转中心顺时针旋转,画出旋转后对应的并写出各个顶点坐标;(2)分别连结,后,求四边形的面积2、如图,在平面直角坐标系中,ABC三个顶点的坐标分别为A(0,3),B(3,5),C(4,1)(1)把ABC向右平移3个单位得A1B1C1,请
5、画出A1B1C1并写出点A1的坐标;(2)把ABC绕原点O旋转180得到A2B2C2,请画出A2B2C23、如图所示的方格纸中每个小方格都是边长为1个单位的正方形,建立如图所示的平面直角坐标系.(1)请写出ABC各点的坐标A B C ;(2)若把ABC向上平移2个单位,再向右平移2个单位得,在图中画出,(3)求ABC 的面积4、已知是等腰三角形,将绕点逆时针旋转得到,点、点的对应点分别是点、点感知:(1)如图,当落在边上时,与之间的数量关系是_(不需要证明);探究:(2)如图,当不落在边上时,与是否相等?如果相等,请证明;如果不相等,请说明理由;应用:(3)如图,若,、交于点,则_度5、如图,
6、在平面直角坐标系中,P(a,b)是三角形ABC的边AB上一点,三角形ABC经平移后点P的对应点为(1)请画出经过上述平移后得到的三角形,并写出点,的坐标;(2)求点到的距离-参考答案-一、单选题1、D【分析】把一个图形绕某一点旋转180,如果旋转后的图形能够与原来的图形重合,那么这个图形就叫做中心对称图形【详解】A、不是中心对称图形,故此选项不合题意;B、不是中心对称图形,故此选项不合题意;C、不是中心对称图形,故此选项不合题意;D、是中心对称图形,故此选项符合题意;故选:D【点睛】本题考查了中心对称图形的概念,理解概念并知道一些常见的中心对称图形是关键2、C【分析】根据“旋转角是指以图形在作
7、旋转运动时,一个点与中心的旋转连线,与这个点在旋转后的对应点与旋转中心的连线,这两条线的夹角”,由此问题可求解【详解】解:由题意得:旋转角为DAB或EAF,故选C【点睛】本题主要考查旋转角,熟练掌握求一个旋转图形的旋转角是解题的关键3、A【分析】直接利用平移中点的变化规律求解即可,平移中点的变化规律是:横坐标右移加,左移减;纵坐标上移加,下移减【详解】,得到的点的坐标是故选:A【点睛】本题考查图形的平移变换,关键是要懂得左右移动改变点的横坐标,左减,右加;上下移动改变点的纵坐标,下减,上加4、D【分析】根据轴对称图形与中心对称图形的概念,并结合选项中图形的特点即可选择【详解】解:A、是轴对称图
8、形,不是中心对称图形,故该选项不符合题意;B、不是轴对称图形,是中心对称图形,故该选项不符合题意;C、是轴对称图形,不是中心对称图形,故该选项不符合题意;D、是轴对称图形,是中心对称图形,故该选项符合题意故选:D【点睛】本题考查了中心对称图形与轴对称图形的概念轴对称图形的关键是寻找对称轴,图形沿对称轴折叠后可重合;中心对称图形关键是要寻找对称中心,图形旋转180后与原图重合5、C【分析】根据轴对称图形和中心对称图形的概念,对各选项分析判断即可得解把一个图形绕某一点旋转180,如果旋转后的图形能够与原来的图形重合,那么这个图形就叫做中心对称图形;如果一个图形沿一条直线折叠,直线两旁的部分能够互相
9、重合,这个图形叫做轴对称图形【详解】解:A不是轴对称图形,是中心对称图形,故本选项不符合题意;B既不是轴对称图形,又不是中心对称图形,故本选项不符合题意;C既是轴对称图形,又是中心对称图形,故本选项符合题意;D是轴对称图形,不是中心对称图形,故本选项不符合题意故选:C【点睛】本题考查了中心对称图形与轴对称图形的概念,轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后与原图重合6、B【分析】把一个图形绕某一点旋转180,如果旋转后的图形能够与原来的图形重合,那么这个图形就叫做中心对称图形,这个点叫做对称中心【详解】解:选项B能找到这样的一个点,使图
10、形绕某一点旋转180后与原来的图形重合,所以是中心对称图形;选项A、C、D不能找到这样的一个点,使图形绕某一点旋转180后与原来的图形重合,所以不是中心对称图形;故选:B【点睛】此题主要考查了中心对称图形定义,关键是找出对称中心7、D【分析】根据轴对称图形与中心对称图形的概念求解【详解】解:A、不是轴对称图形,也不是中心对称图形故本选项不合题意;B、是轴对称图形,不是中心对称图形故本选项不合题意;C、不是轴对称图形,是中心对称图形故本选项不合题意;D、既是轴对称图形又是中心对称图形故本选项符合题意故选:D【点睛】本题考查了中心对称图形与轴对称图形的概念:轴对称图形的关键是寻找对称轴,图形两部分
11、沿对称轴折叠后可重合;中心对称图形是要寻找对称中心,旋转180度后与原图重合8、D【详解】解:是轴对称图形,不是中心对称图形,故本选项不符合题意;是轴对称图形,不是中心对称图形,故本选项不符合题意;不是轴对称图形,也不是中心对称图形,故本选项不符合题意;既是轴对称图形,又是中心对称图形,故本选项符合题意故选:D【点睛】本题考查了中心对称图形与轴对称图形的概念,解题的关键是判断轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合;判断中心对称图形是要寻找对称中心,旋转180度后与原图重合9、B【分析】由旋转知ACAC,BACCAB,ACA90,从而得出ACA是等腰直角三角形,即可解决问题【详解】
12、解:将ABC绕点C顺时针旋转90得到ABC,ACAC,BACCAB,ACA90,ACA是等腰直角三角形,CAA45,BAC20,CAB20,AAB25故选:B【点睛】本题主要考查了图形的旋转,等腰直角三角形的性质,熟练掌握图形旋转前后对应线段相等,对应角相等是解题的关键10、B【分析】根据中心对称图形与轴对称图形的概念逐项分析【详解】解:A. 是轴对称图形,不是中心对称图形,故该选项不正确,不符合题意;B. 既是轴对称图形,又是中心对称图形,故该选项正确,符合题意;C. 不是轴对称图形,是中心对称图形,故该选项不正确,不符合题意;D. 不是轴对称图形,是中心对称图形,故该选项不正确,不符合题意
13、;故选B【点睛】本题考查了中心对称图形与轴对称图形的概念:轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合;中心对称图形是要寻找对称中心,旋转180度后两部分重合,掌握中心对称图形与轴对称图形的概念是解题的关键二、填空题1、【分析】根据旋转的性质可得,所以,由题意可得:,为等边三角形,即可求解【详解】解:,由旋转的性质可得,为等边三角形,故答案为:【点睛】此题考查了直角三角形的性质,旋转的性质以及等边三角形的判定与性质,解题的关键是灵活掌握相关基本性质进行求解2、 (4,0)或(2,2)【分析】利用网格结构找出点B绕点D旋转90后的位置,然后根据平面直角坐标系写出点的坐标即可【详解】解:如
14、图,点B绕点D旋转90到达点B或B,点B的坐标为(4,0),B(2,2)故答案为:(4,0)或(2,2)【点睛】本题主要考查了坐标与图形变化旋转,解题的关键在于能够利用数形结合的思想进行求解3、5【分析】先根据含30度的直角三角形三边的关系得BCAB5,在根据旋转的性质得CBCB,CBACBA60,则可判断BBC为等边三角形,然后根据等边三角形的性质求解【详解】解:ACB90,A30,AB10,BCAB5,ABC60,三角板ABC绕点C逆时针旋转,点B恰好落在边AB上,CBCB,CBACBA60,BBC为等边三角形,BBBC5故答案为:5【点睛】本题考查了旋转的性质:旋转前后两图形全等;对应点
15、到旋转中心的距离相等;对应点与旋转中心的连线段的夹角等于旋转角也考查了等边三角形的判定与性质、含30度的直角三角形三边的关系4、4040度【分析】根据ABC绕点A逆时针旋转至ADE,得到ABCADE,即可得到ADEB40,问题得解【详解】解:ABC绕点A逆时针旋转至ADE,ABCADE,ADEB40故答案为:40【点睛】本题考查了图形旋转的性质,熟知旋转前后的两个图形全等是解题关键5、120度【分析】根据图形的对称性,用360除以3计算即可得解【详解】解:3603=120,旋转的角度是120的整数倍,旋转的角度至少是120故答案为:120【点睛】本题考查了旋转对称图形,仔细观察图形求出旋转角是
16、120的整数倍是解题的关键三、解答题1、(1)图见解析,;(2)9【分析】利用网格特点和旋转的性质画出、的对应点、,从而得到;利用两个梯形的面积和减去一个三角形的面积计算四边形的面积【详解】解:如图,为所作,各个顶点坐标为,;如图,四边形的面积【点睛】本题考查了作图旋转变换,根据旋转的性质画出转后对应的是解决问题的关键2、(1)图见解析;A1(3,3);(2)见解析【分析】(1)直接利用平移的性质得出对应点位置进而得出答案;(2)直接利用旋转的性质得出对应点位置进而得出答案【详解】解:(1)如图所示:A1B1C1,即为所求,点A1的坐标为:(3,3);(2)如图所示:A2B2C2,即为所求【点
17、睛】此题主要考查了旋转变换以及平移变换,正确得出对应点位置是解题关键3、(1);(2)见解析;(3)7【分析】(1)根据平面直角坐标系直接写出点的坐标即可;(2)分别将点的横坐标和纵坐标都加2得到,并顺次连接,则即为所求(3)根据长方形减去三个三角形的面积即可求得ABC 的面积【详解】(1)根据平面直角坐标系可得故答案为:(2)如图所示,分别将点的横坐标和纵坐标都加2得到,并顺次连接,则即为所求(3)的面积等于【点睛】本题考查了坐标与图形,平移作图,掌握平移的性质是解题的关键4、(1);(2),利用见解析;(3)135【分析】(1)根据旋转的性质和等腰三角形的性质证明即可;(2)根据已知条件证
18、明,即可得解;(3)根据等腰三角形的性质和旋转性质计算即可;【详解】解:感知:由旋转可得,探究:,证明:由旋转可得,应用:,由探究可得,设与AE的交点为O,;故答案是135【点睛】本题主要考查了旋转的性质和等腰三角形的性质,准确分析计算是解题的关键5、(1)图见解析,;(2)【分析】(1)利用平移变换的性质,分别作出A,B,C的对应点A1,B1,C1即可;(2)设点A1到B1C1的距离为h利用面积法构建方程求解即可【详解】(1)P(a,b)平移后的对应点是平移规则是向左移动2个单位长度,再向上移动5个单位长度A(1,-1),B(0,-5),C(4,-1);(2)由图形可知设点A1到B1C1的距离为h即设点A1到B1C1的距离为【点睛】本题考查作图-平移变换,三角形的面积等知识,解题的关键是掌握平移变换的性质,学会利用面积法解决求线段问题