《精品试卷沪教版七年级数学第二学期第十四章三角形课时练习练习题(精选).docx》由会员分享,可在线阅读,更多相关《精品试卷沪教版七年级数学第二学期第十四章三角形课时练习练习题(精选).docx(34页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、沪教版七年级数学第二学期第十四章三角形课时练习 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、如果三角形一边上的中线等于这条边的一半,那么这个三角形一定是( )A锐角三角形B直角三角形C钝角三角形D等腰三
2、角形2、如图:将一张长为40cm的长方形纸条按如图所示折叠,若AB=3BC,则纸条的宽为( ) A12B14C16D183、如图,ADBC,C30,ADB:BDC1:2,EAB72,以下四个说法:CDF30;ADB50;ABD22;CBN108其中正确说法的个数是()A1个B2个C3个D4个4、如图,等边中,D为AC中点,点P、Q分别为AB、AD上的点,在BD上有一动点E,则的最小值为( )A7B8C10D125、已知三角形的两边长分别为和,则下列长度的四条线段中能作为第三边的是( )ABCD6、等腰三角形的一个顶角是80,则它的底角是( )A40B50C60D707、如图,等腰ABC中,AB
3、AC,点D是BC边中点,则下列结论不正确的是( )ABCBADBCCBADCADDAB2BC8、如图,点A、B、C、D在一条直线上,点E、F在AD两侧,添加下列条件不能判定的是( )ABCD9、下列说法不正确的是( )A有两边对应相等的两个直角三角形全等;B等边三角形的底角与顶角相等;C有一个角是的直角三角形是等腰直角三角形;D如果点与点到直线的距离相等,那么点与点关于直线对称10、在平面直角坐标系xOy中,点A(0,2),B(a,0),C(m,n)()若ABC是等腰直角三角形,且,当时,点C的横坐标m的取值范围是( )ABCD第卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分
4、)1、如图,一把直尺的一边缘经过直角三角形的直角顶点,交斜边于点;直尺的另一边缘分别交、于点、,若,则_度2、一个三角形的其中两个内角为,则这个第三个内角的度数为_3、如图,在RtABC中,ACB90,BAC30,BC6,将ABC绕点C顺时针旋转30得到ABC,A、B分别与A、B对应,CA交AB于点M,则CM的长为 _4、如图,在ABC中,C62,ABC两个外角的角平分线相交于G,则G的度数为_5、如图,上午9时,一艘船从小岛A出发,以12海里的速度向正北方向航行,10时40分到达小岛B处,若从灯塔C处分别测得小岛A、B在南偏东34、68方向,则小岛B处到灯塔C的距离是_海里三、解答题(10小
5、题,每小题5分,共计50分)1、如图,已知点E、C在线段BF上,求证:ABCDEF2、如图,在ABC中,ABAC,M,N分别是AB,AC边上的点,并且MNBC(1)AMN是否是等腰三角形?说明理由;(2)点P是MN上的一点,并且BP平分ABC,CP平分ACB求证:BPM是等腰三角形;若ABC的周长为a,BCb(a2b),求AMN的周长(用含a,b的式子表示)3、已知:如图,点B、C在线段AD的异侧,点E、F分别是线段AB、CD上的点,AEGAGE,CDGC(1)求证:AB/CD;(2)若AGE+AHF=180,求证:B=C;(3)在(2)的条件下,若BFC=4C,求D的度数4、如图,为等边三角
6、形,D是BC中点,CE是的外角的平分线求证:5、周老师带领同学们在数学课上探究下面命题的正确性:顶角为36的等腰三角形具有一种特性,即经过它某一顶点的一条直线可把它分成两个小等腰三角形为此,请你完成下列问题:(1)已知:如图,在中,直线BD平分交AC于点D求证:与都是等腰三角形;(2)在证明了该命题后,小尹同学发现:图、两个等腰三角形也具有这种特性,请你在图、图中分别画出一条直线,把它们分成两个小等腰三角形,并在图中标出所有等腰三角形两个底角的度数;(3)接着,小尹又发现:还有一些非等腰三角形也具有这样的特性:即过它其中一个顶点画一条直线可以将原三角形分成两个小等腰三角形,请你画出一个具有这种
7、特性的三角形的示意图,并在图中标出可能的各内角的度数(4)请你写出两个符合(3)中一般规律的非等腰三角形的特征6、如图,在中,AD是角平分线,E是AB边上一点,连接ED,CB是的平分线,ED的延长线与CF交于点F(1)求证:;(2)若,则_度7、如图,在中,点D、E分别在边AB、AC上,BE与CD交于点F,求和的度数8、如图1,点O是线段AD的中点,分别以AO和DO为边在线段AD的同侧作等边三角形OAB和等边三角形OCD,连接AC和BD,相交于点E,连接BC(1)求证DOBAOC;(2)求CEB的大小;(3)如图2,OAB固定不动,保持OCD的形状和大小不变,将OCD绕点O旋转(OAB和OCD
8、不能重叠),求CEB的大小9、在等边中,D、E是BC边上两动点(不与B,C重合)(1)如图1,求的度数;(2)点D在点E的左侧,且AD=AE,点E关于直线AC的对称点为F,连接AF,DF依题意将图2补全;求证:10、如图,点D在AC上,BC,DE交于点F,(1)求证:;(2)若,求CDE的度数-参考答案-一、单选题1、B【分析】根据题意画出图形,利用等腰三角形的性质及三角形内角和定理即可得到答案【详解】如图,在ABC中,CD是边AB上的中线AD=CD=BDA=DCA,B=DCBA+ACB+B=180 A+DCA+DCB+B=180即2A+2B=180A+B=90ACB=90ABC是直角三角形故
9、选:B【点睛】本题考查了等腰三角形的性质及三角形内角和定理,熟练运用这两个知识是关键2、B【分析】如图,延长NO交AD的延长线于点P,设BC=x,则AB=3x,利用折叠的性质和等腰直角三角形的性质可表示出纸条的宽MO,NO的长,从而可表示出纸条的长2PN的长,然后根据长方形纸条的长为40,可得到关于x的方程,解方程求出x的值,即可求出纸条的宽【详解】解:如图,延长NO交AD的延长线于点P, 设BC=x,则AB=3x, 折叠, AB=BM=CO=CD=PO=3x, 纸条的宽为:MO=NO=3x+3x+x=7x, 纸条的长为:2PN=2(7x+3x)=20x=40 解得:x=2, 纸条的宽NO=7
10、2=14 故答案为:B【点睛】此题考查了折叠的性质,等腰直角三角形的性质,一元一次方程应用题,解题的关键是正确分析题目中的等量关系列出方程求解3、D【分析】根据ADBC,C30,利用内错角相等得出FDC=C=30,可判断正确;根据邻补角性质可求ADC=180-FDC=180-30=150,根据ADB:BDC1:2,得出方程3ADB=150,解方程可判断正确;根据EAB72,可求邻补角DAN=180-EAB=180-72=108,利用三角形内角和可求ABD=180-NAD-ADB=180-108-50=22可判断正确,利用ADBC,同位角相等的CBN=DAN=108可判断正确即可【详解】解:AD
11、BC,C30,FDC=C=30,故正确;ADC=180-FDC=180-30=150,ADB:BDC1:2,BDC=2ADB,ADC=ADB+BDC=ADB+2ADB=3ADB=150,解得ADB=50,故正确EAB72,DAN=180-EAB=180-72=108,ABD=180-NAD-ADB=180-108-50=22,故正确ADBC,CBN=DAN=108,故正确其中正确说法的个数是4个故选择D【点睛】本题考查平行线性质,角的倍分,邻补角性质,三角形内角和,一元一次方程,掌握平行线性质,邻补角性质,三角形内角和,一元一次方程地解题关键4、C【分析】作点关于的对称点,连接交于,连接,此时
12、的值最小,最小值,据此求解即可【详解】解:如图,是等边三角形,D为AC中点,作点关于的对称点,连接交于,连接,此时的值最小最小值,是等边三角形,的最小值为故选:C【点睛】本题考查等边三角形的性质和判定,轴对称最短问题等知识,解题的关键是学会利用轴对称解决最短问题,属于中考常考题型5、C【分析】根据三角形的三边关系可得,再解不等式可得答案【详解】解:设三角形的第三边为,由题意可得:,即,故选:C【点睛】本题主要考查了三角形的三边关系,解题的关键是掌握三角形两边之和大于第三边;三角形的两边差小于第三边6、B【分析】依据三角形的内角和是180以及等腰三角形的性质即可解答【详解】解:(180-80)2
13、=1002=50;答:底角为50故选:B【点睛】本题主要考查三角形的内角和定理及等腰三角形的两个底角相等的特点7、D【分析】根据等腰三角形的等边对等角的性质及三线合一的性质判断【详解】解:ABAC,点D是BC边中点,BC,ADBC,BADCAD,故选:D【点睛】此题考查了等腰三角形的性质:等边对等角,三线合一,熟记等腰三角形的性质是解题的关键8、A【分析】根据题意,可得,结合选项根据三角形全等的性质与判定逐项分析即可【详解】解:A. ,不能根据SSA证明三角形全等,故该选项符合题意;B. ,故能判定,不符合题意;C. ,,故能判定,不符合题意;D.,故能判定,不符合题意;故选A【点睛】本题考查
14、了平行线的性质,三角形全等的性质与判定,掌握三角形全等的性质与判定是解题的关键9、D【分析】利用全等三角形的判定、等边三角形的判定及轴对称的性质分别判断后即可确定不正确的选项【详解】解:A、有两边对应相等的两个直角三角形全等,正确;B、等边三角形的三个内角都是60,所以等边三角形的底角与顶角相等,正确;C、有一个角是的直角三角形是等腰直角三角形,正确;D、当点与点在直线的同侧时,点与点关于直线不对称,错误,故选:D【点睛】本题考查了命题与定理的知识,解题的关键是了解全等三角形的判定、等边三角形的判定及轴对称的性质等知识,属于基础定理,难度不大10、B【分析】过点作轴于,由“”可证,可得,即可求
15、解【详解】解:如图,过点作轴于,点,是等腰直角三角形,且,在和中,故选:B【点睛】本题考查了全等三角形的判定和性质,等腰直角三角形的性质,解题的关键是画图及添加恰当辅助线构造全等三角形二、填空题1、20【分析】利用平行线的性质求出1,再利用三角形外角的性质求出DCB即可【详解】解:EFCD,1是DCB的外角,1-B=50-30=20,故答案为:20【点睛】本题考查了平行线的性质,三角形外角的性质等知识,解题的关键是熟练掌握基本知识2、60【分析】依题意,利用三角形内角和为:,即可;【详解】由题得:一个三角形的内角和为:;又已知两个其中的内角为:,; 第三个角为:;故填:【点睛】本题主要考查三角
16、形的内角和,关键在于熟练并运用基本的计算;3、【分析】根据旋转的性质可得,所以,由题意可得:,为等边三角形,即可求解【详解】解:,由旋转的性质可得,为等边三角形,故答案为:【点睛】此题考查了直角三角形的性质,旋转的性质以及等边三角形的判定与性质,解题的关键是灵活掌握相关基本性质进行求解4、59【分析】先利用三角形内角和定理求出CAB+CBA=180-C=118,从而利用三角形外角的性质求出DAB+EBA=2C+CAB+CBA=242,再由角平分线的定义求出,由此求解即可【详解】解:C=62,CAB+CBA=180-C=118,DAB=C+CBA,EBA=C+CAB,DAB+EBA=2C+CAB
17、+CBA=242,ABC两个外角的角平分线相交于G,G=180-GAB-GBA=59,故答案为:59【点睛】本题主要考查了三角形内角和定理,三角形外角的性质,角平分线的定义,熟知相关知识是解题的关键5、20【分析】根据题干所给的角的度数,易证是等腰三角形,而AB的长易求,即可根据等腰三角形的性质,得出BC的值【详解】解:据题意得,即,由题意可知这艘船行驶的时间为(小时)(海里),(海里)故答案为:20【点睛】本题考查了三角形外角的性质,等腰三角形的判定和性质,方向角的问题,解题的关键是由已知得到三角形是等腰三角形,要学会把实际问题转化为数学问题,再用数学知识解决实际问题三、解答题1、见解析【分
18、析】由平行线的性质可证明再由,可推出最后即可利用“ASA”直接证明【详解】证明:,即在和中,【点睛】本题考查三角形全等的判定,平行线的性质,线段的和与差掌握三角形全等的判定条件是解答本题的关键2、(1)AMN是是等腰三角形;理由见解析;(2)证明见解析;ab【分析】(1)由等腰三角形的性质得到ABC=ACB,由平行线的性质得到AMN=ABC,ANM=ACB,于是得到AMN=ANM,根据等角对等边即可证得结论;(2)由角平分线的定义得到PBM=PBC,由平行线的性质得到MPB=PBC,于是得到PBM=MPB,根据等角对等边即可证得结论;由知MB=MP,同理可得:NC=NP,故AMN的周长=AB+
19、AC,再根据已知条件即可求出结果(1)解:AMN是是等腰三角形,理由如下:ABAC,ABCACB,MNBC,AMNABC,ANMACB,AMNANM,AMAN,AMN是等腰三角形;(2)证明:BP平分ABC,PBMPBC,MNBC,MPBPBCPBMMPB,MBMP,BPM是等腰三角形;由知MBMP,同理可得:NCNP,AMN的周长AM+MP+NP+ANAM+MB+NC+ANAB+AC,ABC的周长为a,BCb,AB+AC+ba,AB+ACabAMN的周长ab【点睛】本题考查了等腰三角形的性质和判定,平行线的性质,列代数式,能够灵活应用这些性质是解决问题的关键3、(1)见解析;(2)见解析;(
20、3)108【分析】(1)根据对顶角相等结合已知条件得出AEGC,根据内错角相等两直线平行即可证得结论;(2)由AGE+AHF=180等量代换得DGC+AHF=180可判断EC/BF,两直线平行同位角相等得出B=AEG,结合(1)得出结论;(3)由(2)证得EC/BF,得BFC+C=180,求得C的度数,由三角形内角和定理求得D的度数【详解】证明:(1)AEG=AGE,C=DGC,AGE=DGCAEG=C AB/CD(2)AGE=DGC,AGE+AHF=180DGC+AHF=180EC/BF B=AEG由(1)得AEG=C B=C(3)由(2)得EC/BFBFC+C=180BFC=4C C=36
21、 DGC=36C+DGC+D=180 D=108【点睛】此题考查了平行线的判定与性质,三角形内角和定理,熟记“内错角相等,两直线平行”、“同旁内角互补,两直线平行”及“两直线平行,同旁内角互补”是解题的关键4、证明见解析.【分析】过D作DGAC交AB于G,由等边三角形的性质和平行线的性质得到BDGBGD60,于是得到BDG是等边三角形,再证明AGDDCE即可得到结论.【详解】证明:过D作DGAC交AB于G,ABC是等边三角形,ABAC,BACBBAC60,又DGAC,BDGBGD60,BDG是等边三角形,AGD180BGD120,DGBD,点D为BC的中点,BDCD,DGCD,EC是ABC外角
22、的平分线,ACE(180ACB)60,BCEACBACE120AGD,ABAC,点D为BC的中点,ADBADC90,又BDG60,ADE60,ADGEDC30,在AGD和ECD中,AGDECD(ASA)ADDE【点睛】本题是三角形综合题,主要考查了平行线的性质,全等三角形的性质与判定,等边三角形的判定与性质,熟练掌握全等三角形的判定与性质是解题的关键5、(1)见详解;(2)见详解;(3)见详解;(4)见详解;【分析】(1)根据等边对等角,及角平分线定义易得1=2=36,C=72,那么BDC=72,则可得AD=BD=CB,所以ABD与DBC都是等腰三角形;(2)把等腰直角三角形分为两个小的等腰直
23、角三角形即可,把108的角分为36和72即可;(3)利用直角三角形的中线等于直角三角形斜边的一半可得任意直角三角形的中线把直角三角形分为两个等腰三角形;由(1),(2)易得所知的两个角要么是2倍关系,要么是3倍关系,可猜测只要所给的三个角中有2个角是2倍或3倍关系都可得到上述图形;(4)按照发现的(3)的特点来写,注意去掉特殊三角形的形式(1)证明:在ABC中,AB=AC,ABC=C,A=36,ABC=C=(180-A)=72,BD平分ABC,1=2=363=1+A=72,1=A,3=C,AD=BD,BD=BC,ABD与BDC都是等腰三角形(2)解:如下图所示:(3)解:如图所示:(4)解:特
24、征一:直角三角形(直角边不等);特征二:2倍内角关系,在ABC中,A=2B,0B45,其中,B30;【点睛】本题考查了等腰三角形的判定;注意应根据题中所给的范例用类比的方法推测出把一般三角形分为两个等腰三角形的一般结论6、(1)见解析,(2)46【分析】(1)根据等腰三角形的性质和角平分线得到BACBBCF,由AD是角平分线,得到BDCD,证BDECDF即可;(2)根据全等三角形的性质得到DEDFDA,根据求得DAB,进而求出B的度数即可【详解】(1)证明:,BACB,CB是的平分线,ACBBCF,BBCF,AD是角平分线,ABAC,BDCD,BDECDF,BDECDF(AAS);(2)BDE
25、CDF;EDFD,,EDAD,BACBBCF23,故答案为:46【点睛】本题考查了等腰三角形的性质和全等三角形的判定与性质,解题关键是熟练运用相关知识进行推理证明和计算7、87,40【分析】根据三角形外角的性质可得,代入计算即可求出,再根据三角形内角和定理求解即可【详解】解:,【点睛】本题考查了三角形内角和和外角的性质,解题关键是准确识图,理清角之间的关系,准确进行计算8、(1)见详解;(2)120;(2)120【分析】(1)如图1,根据等边三角形的性质得到OD=OC=OA=OB,COD=AOB=60,则利用根据“SAS”判断AOCBOD;(2)利用AOCBOD得到CAO=DBO,然后根据三角
26、形内角和可得到AEB=AOB=60,即可求出答案;(3)如图2,与(1)的方法一样可证明AOCBOD;则CAO=DBO,然后根据三角形内角和可求出AEB=AOB=60,即可得到答案【详解】(1)证明:如图1,ODC和OAB都是等边三角形,OD=OC=OA=OB,COD=AOB=60,BOD=AOC=120,在AOC和BOD中AOCBOD;(2)解:AOCBOD,CAO=DBO,1=2,AEB=AOB=60,;(3)解:如图2,ODC和OAB都是等边三角形, OD=OC=OA=OB,COD=AOB=60,AOB+BOC=COD+BOC,即AOC=BOD,在AOC和BOD中AOCBOD;CAO=D
27、BO,1=2,AEB=AOB=60,;即CEB的大小不变【点睛】本题考查了几何变换综合题:熟练掌握旋转的性质、等边三角形的性质和全等三角形的判定与性质;利用类比的方法解决(3)小题9、(1);(2)作图见解析;证明见解析【分析】(1)等边三角形中,由知,进而求出的值;(2)作图见详解; ,点E,F关于直线对称,为等边三角形,进而可得到【详解】解:(1)为等边三角形(2)补全图形如图所示,证明:为等边三角形 ,点E,F关于直线对称,即为等边三角形【点睛】本题考察了等边三角形的判定与性质,等腰三角形的性质,轴对称的性质解题的关键在于角度的转化10、(1)证明见解析;(2)CDE=20【分析】(1)由“SAS”可证ABCDBE;(2)由全等三角形的性质可得C=E,由三角形的外角性质可求解(1)证明:ABD=CBE,ABD+DBC=CBE+DBC,即:ABC=DBE,在ABC和DBE中,ABCDBE(SAS);(2)解:由(1)可知:ABCDBE,C=E,DFB=C+CDE,DFB=E+CBE,CDE=CBE,ABD=CBE=20,CDE=20【点睛】本题考查了全等三角形的判定和性质,三角形的外角性质,证明三角形全等是解题的关键