《精品试题沪教版七年级数学第二学期第十四章三角形课时练习练习题(精选).docx》由会员分享,可在线阅读,更多相关《精品试题沪教版七年级数学第二学期第十四章三角形课时练习练习题(精选).docx(42页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、沪教版七年级数学第二学期第十四章三角形课时练习 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、三角形的外角和是()A60B90C180D3602、下列叙述正确的是( )A三角形的外角大于它的内角B三角形的
2、外角都比锐角大C三角形的内角没有小于60的D三角形中可以有三个内角都是锐角3、三根小木棒摆成一个三角形,其中两根木棒的长度分别是和,那么第三根小木棒的长度不可能是( )ABCD4、如图,ABC中,ACB90,ABC40将ABC绕点B逆时针旋转得到,使点C的对应点恰好落在边AB上,则的度数是( )A50B70C110D1205、如图,点F,C在BE上,ACDF,BFEC,ABDE,AC与DF相交于点G,则与2DFE相等的是()AA+DB3BC180FGCDACE+B6、如图,直线l1l2,被直线l3、l4所截,并且l3l4,146,则2等于()A56B34C44D467、以下长度的三条线段,能组
3、成三角形的是( )A2,3,5B4,4,8C3,4.8,7D3,5,98、如图,亮亮书上的三角形被墨迹污染了一部分,很快他就根据所学知识画出一个与书上完全一样的三角形他的依据是( )ABCD9、如图,在中,将绕点顺时针旋转得到,当点的对应点恰好落在边上时,的长为( )A3B4C5D610、下列命题是真命题的是( )A等腰三角形的角平分线、中线、高线互相重合B一个三角形被截成两个三角形,每个三角形的内角和是90度C有两个角是60的三角形是等边三角形D在ABC中,则ABC为直角三角形第卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、如图,点D是的平分线OC上一点,过点D作交射
4、线OA于点E,则线段DE与OE的数量关系为:DE_OE(填“”或“”或“”)2、如图,BD,CE是等边三角形ABC的中线,BD,CE交于点F,则_3、如图,在边长为4,面积为的等边中,点、分别是、边的中点,点是边上的动点,求的最小值_4、如图,在中,交BC的延长线于点E,若,点C是BE中点,则_5、在平面直角坐标系中,则点的坐标为_三、解答题(10小题,每小题5分,共计50分)1、在中,点D是直线AC上一动点,连接BD并延长至点E,使过点E作于点F(1)如图1,当点D在线段AC上(点D不与点A和点C重合)时,此时DF与DC的数量关系是_(2)如图2,当点D在线段AC的延长线上时,依题意补全图形
5、,并证明:(3)当点D在线段CA的延长线上时,直接用等式表示线段AD,AF,EF之间的数量关系是_2、如图,点A,B,C,D在一条直线上,求证:3、(1)我们把两个面积相等但不全等的三角形叫做“偏等积三角形”,如图1,中,P为上一点,当_时,与是偏等积三角形;(2)如图2,四边形是一片绿色花园,、是等腰直角三角形,与是偏等积三角形吗?请说明理由;已知的面积为如图3,计划修建一条经过点C的笔直的小路,F在边上,的延长线经过中点G若小路每米造价600元,请计算修建小路的总造价4、如图,AD为ABC的角平分线(1)如图1,若BEAD于点E,交AC于点F,AB4,AC7则CF ;(2)如图2,CGAD
6、于点G,连接BG,若ABG的面积是6,求ABC的面积;(3)如图3,若B2C,ABm,ACn,则CD的长为 (用含m,n的式子表示)5、如图,在四边形ABCD中,E是CB上一点,分别延长AE,DC相交于点F,(1)求证:;(2)若,求BE的长6、中,以点为中心,分别将线段,逆时针旋转得到线段,连接,延长交于点(1)如图1,若,的度数为_;(2)如图2,当吋,依题意补全图2;猜想与的数量关系,并加以证明7、已知,在ABC中,BAC30,点D在射线BC上,连接AD,CAD,点D关于直线AC的对称点为E,点E关于直线AB的对称点为F,直线EF分别交直线AC,AB于点M,N,连接AF,AE,CE(1)
7、如图1,点D在线段BC上根据题意补全图1;AEF (用含有的代数式表示),AMF ;用等式表示线段MA,ME,MF之间的数量关系,并证明(2)点D在线段BC的延长线上,且CAD60,直接用等式表示线段MA,ME,MF之间的数量关系,不证明8、已知:直线AB、CR被直线UV所截,直线UV交直线AB于点B,交直线CR于点D,ABU+CDV180(1)如图1,求证:ABCD;(2)如图2,BEDF,MEBABE+5,FDR35,求MEB的度数;(3)如图3,在(2)的条件下,点N在直线AB上,分别连接EN、ED,MGEN,连接ME,GMEGEM,EBD2NEG,EB平分DEN,MHUV于点H,若ED
8、CCDB,求GMH的度数9、已知:在ABC中,AD平分BAC,AE=AC求证:ADCE10、如图,E为BC中点,DE平分(1)求证:平分;(2)求证:;(3)求证:-参考答案-一、单选题1、D【分析】根据三角形的内角和定理、邻补角的性质即可得【详解】解:如图,又,即三角形的外角和是,故选:D【点睛】本题考查了三角形的内角和定理、邻补角的性质,熟练掌握三角形的内角和定理是解题关键2、D【分析】结合直角三角形,钝角三角形,锐角三角形的内角与外角的含义与大小逐一分析即可.【详解】解:三角形的外角不一定大于它的内角,锐角三角形的任何一个外角都大于内角,故A不符合题意;三角形的外角可以是锐角,不一定比锐
9、角大,故B不符合题意;三角形的内角可以小于60,一个三角形的三个角可以为: 故C不符合题意;三角形中可以有三个内角都是锐角,这是个锐角三角形,故D符合题意;故选D【点睛】本题考查的是三角形的的内角与外角的含义与大小,掌握“直角三角形,钝角三角形,锐角三角形的内角与外角”是解本题的关键.3、D【分析】设第三根木棒长为x厘米,根据三角形的三边关系可得85x8+5,确定x的范围即可得到答案【详解】解:设第三根木棒长为x厘米,由题意得:85x8+5,即3x13,故选:D【点睛】此题主要考查了三角形的三边关系,要注意三角形形成的条件:任意两边之和第三边,任意两边之差第三边4、B【分析】根据旋转可得,得【
10、详解】解:,将绕点逆时针旋转得到,使点的对应点恰好落在边上,故选:B【点睛】本题考查了旋转的性质,等腰三角形的性质,三角形内角和定理,解决本题的关键是掌握旋转的性质5、C【详解】由题意根据等式的性质得出BCEF,进而利用SSS证明ABC与DEF全等,利用全等三角形的性质得出ACBDFE,最后利用三角形内角和进行分析解答【分析】解:BFEC,BF+FCEC+FC,BCEF,在ABC与DEF中,ABCDEF(SSS),ACBDFE,2DFE180FGC,故选:C【点睛】本题考查全等三角形的判定与性质,其中全等三角形的判定方法有:SSS;SAS;ASA;AAS;以及HL(直角三角形的判定方法)6、C
11、【分析】依据l1l2,即可得到3146,再根据l3l4,可得2904644【详解】解:如图:l1l2,146,3146,又l3l4,2904644,故选:C【点睛】本题考查了平行线性质以及三角形内角和,平行线的性质:两直线平行,同位角相等以及三角形内角和是1807、C【分析】由题意根据三角形的三条边必须满足:任意两边之和大于第三边,任意两边之差小于第三边进行分析即可【详解】解:A、2+3=5,不能组成三角形,不符合题意;B、4+4=8,不能组成三角形,不符合题意;C、3+4.87,能组成三角形,符合题意;D、3+59,不能组成三角形,不符合题意故选:C【点睛】本题主要考查对三角形三边关系的理解
12、应用注意掌握判断是否可以构成三角形,只要判断两个较小的数的和大于最大的数即可8、C【分析】根据题意,可知仍可辨认的有1条边和2个角,且边为两角的夹边,即可根据来画一个完全一样的三角形【详解】根据题意可得,已知一边和两个角仍保留,且边为两角的夹边,根据两个三角形对应的两角及其夹边相等,两个三角形全等,即故选C【点睛】本题考查了三角形全等的性质与判定,掌握三角形的判定方法是解题的关键9、A【分析】先根据旋转的性质可得,再根据等边三角形的判定与性质可得,然后根据线段的和差即可得【详解】由旋转的性质得:,是等边三角形,故选:A【点睛】本题考查了旋转的性质、等边三角形的判定与性质等知识点,熟练掌握旋转的
13、性质是解题关键10、C【分析】分别根据等腰三角形的性质、三角形的内角和定理、等边三角形的判定,直角三角形的判定即可判断【详解】A.等腰三角形中顶角角平分线、底边上的中线和底边上的高线互相重合,即三线合一,故此选项错误;B.三角形的内角和为180,故此选项错误;C.有两个角是60,则第三个角为,所以三角形是等边三角形,故此选项正确;D.设,则,故,解得,所以,此三角形不是直角三角形,故此选项错误故选:C【点睛】本题考查等腰三角形的性质,直角三角形的定义以及三角形内角和,掌握相关概念是解题的关键二、填空题1、【分析】首先由平行线的性质求得EDO=DOB,然后根据角平分线的定义求得EOD=DOB,最
14、后根据等腰三角形的判定和性质即可判断【详解】解:EDOB,EDO=DOB,D是AOB平分线OC上一点,EOD=DOB,EOD=EDO,DE=OE,故答案为:=【点睛】本题主要考查的是平行线的性质、角平分线的定义以及等角对等边,根据平行线的性质和角平分线的定义求得EOD=EDO是解题的关键2、120【分析】等边三角形中线与角平分线合一,有,由可求得结果【详解】解:是等边三角形BD,CE是等边三角形ABC的中线又故答案为:【点睛】本题考查了等边三角形的性质,角度的计算解题的关键在于熟练利用等边三角形三线合一的性质3、【分析】连接,交于点,连接,则的最小值为,再由已知求出的长即可【详解】解:连接,交
15、于点,连接,是等边三角形,是边中点,点与点关于对称,的最小值为,是的中点,的面积为,的最小值为,故答案为:【点睛】本题考查了等边三角形的性质,将军饮马河原理,熟练掌握等边三角形的性质,灵活运用将军饮马河原理是解题的关键4、67.5【分析】连接AE,先得出BAC=BAE,再根据,得出BAC=22.5,最后得出结果【详解】解:连接AE,点C是BE中点,BC=CE,ACB=90,ACBE,AB=AE, BAC=BAE,DEAB,ADE=90,AED=DAE=45,BAC=BAE=22.5,B=90-BAC=67.5故答案为:67.5【点睛】本题考查了线段垂直平分线的性质,等腰三角形的性质及直角三角形
16、的性质,正确作出辅助线是解题的关键5、 【分析】按照在x轴的上下方,分成两类情况讨论,如解析中的图像所示,分别利用边和角证明和成立,然后根据对应边相等,即可求出两种情况对应的点B的坐标【详解】解:如下图所示:由,可知:,当B点在x轴下方时,过点B1向x轴作垂线,垂足为E, 在与中: , 点坐标为 当B点在x轴上方时,过点B2向x轴作垂线,垂足为D由题意可知: 在与中 , 点坐标为 故答案为:或【点睛】本题主要是考查了全等三角形的判定和性质以及坐标点的求解,熟练利用全等三角形证明边相等,进而利用边长求解点的坐标,这是解决该题的关键三、解答题1、(1)(2)见解析(3)【分析】(1)利用边相等和角
17、相等,直接证明,即可得到结论(2)利用边相等和角相等,直接证明,得到和,最后通过边与边之间的关系,即可证明结论成立(3)要证明,先利用边相等和角相等,直接证明,得到和,最后通过边与边之间的关系,即可证明结论成立【详解】(1)解:,在和中, ,(2)解:当点D在线段AC的延长线上时,如下图所示:,在和中, ,(3)解:,如下图所示:,在和中, ,【点睛】本题主要是考查了三角形全等的判定和性质,熟练利用条件证明三角形全等,然后利用边相等以及边与边之间关系,即可证明结论成立,这是解决该题的关键2、见解析【分析】根据平行线的性质得出,运用“角角边”证明AEBCFD即可【详解】证明:,在AEB和CFD中
18、,AEBCFD,【点睛】本题考查了全等三角形的判定与性质,解题关键是熟练运用全等三角形的判定定理进行证明3、(1);(2)与是偏等积三角形,理由见详解;修建小路的总造价为元【分析】(1)当时,则,证,再证与不全等,即可得出结论;(2)过作于,过作于,证,得,则,再证与不全等,即可得出结论;过点作,交的延长线于,证得,得到,再证,得,由余角的性质可证,然后由三角形面积和偏等积三角形的定义得,求出,即可求解【详解】解:(1)当时,与是偏等积三角形,理由如下:设点到的距离为,则,、,与不全等,与是偏等积三角形,故答案为:;(3)与是偏等积三角形,理由如下:过作于,过作于,如图3所示:则,、是等腰直角
19、三角形,在和中,与不全等,与是偏等积三角形;如图4,过点作,交的延长线于,则,点为的中点,在和中,在和中,由得:与是偏等积三角形,修建小路的总造价为:(元【点睛】本题是四边形综合题目,考查了新定义“偏等积三角形”的定义、全等三角形的判定与性质、等腰直角三角形的性质、三角形面积等知识;本题综合性强,熟练掌握“偏等积三角形”的定义,证明和是解题的关键,属于中考常考题型4、(1)3(2)12(3)【分析】(1)利用ASA证明AEFABE,得AE=AB=4,得出答案;(2)延长CG、AB交于点H,设SBGC=SHGB=a,用两种方法表示ACH的面积即可;(3)在AC上取AN=AB,可得CD=DN=n-
20、m,根据ABD和ACD的高相等,面积比等于底之比可求出CD的长(1)AD是ABC的平分线,BAD=CAD,BEAD,BEA=FEA,在AEF和AEB中, ,AEFAEB(ASA),AF=AB=4,AC=7 CF=AC-AF=7-4=3,故答案为:3;(2)延长CG、AB交于点H,如图,由(1)知AC=AH,点G为CH的中点,设SBGC=SHGB=a,根据ACH的面积可得:SABC+2a=2(6+a),SABC=12;(3)在AC上取AN=AB,如图,AD是ABC的平分线,NAD=BAD,在ADN与ADB中,ADNADB(SAS),AND=B,DN=BD,B=2C,AND=2C,C=CDN,CN
21、=DN=AC-AB=n-m,BD=DN=n-m,根据ABD和ACD的高相等,面积比等于底之比可得:,故答案为:【点睛】本题主要考查了全等三角形的判定与性质,角平分线的定义,三角形的面积等知识,利用角的轴对称性构造全等三角形是解题的关键5、(1)见解析(2)【分析】(1)利用是的外角,以及证明即可(2)证明,可知,从而得出答案(1)证明:是的外角,又,(2)解:在和中,【点睛】本题考查了三角形的外角以及三角形全等的性质和判定,掌握三角形全等的性质和判定是解题的关键6、(1)120(2)图形见解析;【分析】(1)根据进而判断出点E在边AB上,得出ADEABC(SAS),进而得出AED=ACB=90
22、最后用三角形的外角的性质即可得出结论;(2)依题意补全图形即可;先判断出ADEABC(SAS),进而得出AEF=90,即可判断出RtAEFRtACF,进而求出CAF=CAE=30,即可得出结论(1)(1)如图1,在RtABC中,B=30,BAC=60,由旋转知,CAE=60=CAB,点E在边AB上,AD=AB,AE=AC,ADEABC(SAS),AED=ACB=90,CFE=B+BEF=30+90=120,故答案为120;(2)(2)依题意补全图形如图2所示,如图2,连接AF,BAD=CAE,EAD=CAB,AD=AB,AE=AC,ADEABC(SAS),AED=C=90,AEF=90,RtA
23、EFRtACF(HL),EAF=CAF,CAF=CAE=30,在RtACF中,CF=AF,且AC2+CF2=AF2,【点睛】此题是三角形综合题,主要考查了旋转的性质,全等三角形的判定和性质,三角形的外角的性质,含30度角的直角三角形的性质,勾股定理,判断出ADEABC是解本题的关键7、(1)见解析; ,;MFMAME,证明见解析;(2)【分析】(1)按照要求旋转作图即可;由旋转和等腰三角形性质解出AEF;再由三角形外角定理求出AMF; 在FE上截取GFME,连接AG,证明AFG AEM且AGM为等边三角形后即可证得MFMAME;(2)根据题意画出图形,根据含30的直角三角形的性质,即可得到结论
24、【详解】解:(1)补全图形如下图: CAE=DAC=,BAE=30+FAE=2(30+)AEF=60-;AMF=CAE+AEF=+60-=60,故答案是:60-,60; MFMAME 证明:在FE上截取GFME,连接AG 点D关于直线AC的对称点为E,ADC AECCAE CAD BAC30, EAN30又点E关于直线AB的对称点为F,AB垂直平分EFAFAE,FANEAN 30,FAEFAMG AFAE,FAEF, GFME,AFG AEMAG AM又AMG,AGM为等边三角形MAMGMFMGGFMAME (2),理由如下:如图1所示,点E与点F关于直线AB对称,ANM=90,NE=NF,又
25、NAM=30,AM=2MN,AM=2NE+2EM =MF+ME,MF=AM-ME;如图2所示,点E与点F关于直线AB对称,ANM=90,NE=NF,NAM=30,AM=2NM,AM=2MF+2NF=2MF+NE+NF=ME+MF,MF=MA-ME;综上所述:MF=MA-ME【点睛】本题考查轴对称、三角形全等判定与性质、等边三角形判定与性质,掌握这些是本题关键8、(1)见详解;(2)MEB40,(3)GMH=80【分析】(1)根据等角的补角性质得出ABD=CDV,根据同位角相等两直线平行可得ABCD;(2)根据ABCD;利用内错角相等得出ABD=RDB,根据BEDF,得出EBD=FDB,利用等量
26、减等量差相等得出ABE=FDR,根据FDR35,可得ABE=FDR=35即可;(3)设ME交AB于S,根据MGEN,得出NES=GMS=GES,设NES=y,可得NEG=NES+GES=2NES=2y,根据EBD2NEG,得出EBD =4NES=4y,根据EDCCDB,设EDC=x,得出CDB=7x,根据ABCD,得出GBE+EBD+CDB=180,可得35+4y+7x=180根据三角形内角和BDE=BDC-EDC=7x-x=6x,BED=180-EBD-EDB=180-4y-6x,利用EB平分DEN,得出y+40=180-4y-6x,解方程组,解得,可证MEUV,根据MHUV,可求SMH=9
27、0,SMG=NES=10即可【详解】(1)证明:ABU+ABD=180,ABU+CDV180ABU=180-ABD,CDV180-ABU,ABD=CDV,ABCD;(2)解:ABCD;ABD=RDB,ABE+EBD=FDB+FDR,BEDF,EBD=FDB,ABE=FDR,FDR35,ABE=FDR=35,MEBABE+5=35+5=40,(3)解:设ME交AB于S,MGEN,NES=GMS=GES,设NES=y,EBD2NEGNEG=NES+GES=2NES=2y,EBD =4NES=4y,EDCCDB,设EDC=xCDB=7x,ABCD,ABD+CDB=180,即GBE+EBD+CDB=1
28、80,35+4y+7x=180,BDE=BDC-EDC=7x-x=6x,BED=180-EBD-EDB=180-4y-6x,EB平分DEN,NEB=BED,NEB=NES+SEB=y+40,y+40=180-4y-6x,解得,EBD=4y=40=MEB,MEUV,MHUV,MHME,SMH=90,SMG=NES=10,GMH=90-SMG=90-10=80【点睛】本题考查平行线判定与性质,三角形内角和,垂直性质,角平分线定义,角的倍分,二元一次方程组,掌握平行线判定与性质,三角形内角和,垂直性质,角平分线定义,角的倍分,二元一次方程组是解题关键9、见解析【分析】先根据角平分线的定义得到BAD=
29、BAC,再根据等腰三角形的性质和三角形外角定理得到E=BAC,从而得到BAD=E,即可证明ADCE【详解】解:AD平分BAC,BAD=BAC,AE=AC,E=ACE,E+ACE=BAC,E=BAC,BAD=E,ADCE【点睛】本题考查了角平分线的定义,等腰三角形的性质,平行线的判定,三角形外角定理,熟知相关定理并灵活应用是解题关键10、(1)见解析;(2)见解析;(3)见解析【分析】(1)延长DE交AB延长线于F,由B=C=90,推出ABCD,则CDE=F,再由DE平分ADC,即可推出ADF=F,得到AD=AF,即ADF是等腰三角形,然后证明CDEBFE得到DE=FE,即E是DF的中点,即可证
30、明AE平分BAD;(2)由(1)即可用三线合一定理证明;(3)由CDEBFE,得到CD=BF,则AD=AF=AB+BF=AB+CD【详解】解:(1)如图所示,延长DE交AB延长线于F,B=C=90,ABCD,CDE=F,DE平分ADC,CDE=ADE,ADF=F,AD=AF,ADF是等腰三角形,E是BC的中点,CE=BE,CDEBFE(AAS),DE=FE,E是DF的中点,AE平分BAD;(2)由(1)得ADF是等腰三角形,AD=AF,E是DF的中点,AEDE;(3)CDEBFE,CD=BF,AD=AF=AB+BF=AB+CD【点睛】本题主要考查了平行线的性质与判定,全等三角形的性质与判定,等腰三角形的性质与判定,熟知相关知识是解题的关键