《2022年最新精品解析沪教版七年级数学第二学期第十四章三角形专题练习练习题.docx》由会员分享,可在线阅读,更多相关《2022年最新精品解析沪教版七年级数学第二学期第十四章三角形专题练习练习题.docx(34页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、沪教版七年级数学第二学期第十四章三角形专题练习 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、如图,点F,C在BE上,ACDF,BFEC,ABDE,AC与DF相交于点G,则与2DFE相等的是()AA+DB
2、3BC180FGCDACE+B2、如图,在ABC中,BD平分ABC,C2CDB,AB12,CD3,则ABC的周长为()A21B24C27D303、将三根木条钉成一个三角形木架,这个三角形木架具有稳定性.解释这个现象的数学原理是( )ASSSBSASCASADAAS4、如图,将的BC边对折,使点B与点C重合,DE为折痕,若,则( )A45B60C35D405、如图,已知RtABC中,C90,A30,在直线BC上取一点P,使得PAB是等腰三角形,则符合条件的点P有( )A1个B2个C3个D4个6、尺规作图:作角等于已知角示意图如图所示,则说明的依据是( ) ASSSBSASCASADAAS7、如图
3、,ADBC,C30,ADB:BDC1:2,EAB72,以下四个说法:CDF30;ADB50;ABD22;CBN108其中正确说法的个数是()A1个B2个C3个D4个8、如图,ABC中,ABC与ACB的平分线交于点F,过点F作DEBC交AB于点D,交AC于点E,那么下列结论:BDF是等腰三角形;DEBD+CE;若A50,则BFC115;DFEF其中正确的有( )A1个B2个C3个D4个9、一副三角板如图放置,点A在DF的延长线上,DBAC90,E30,C45,若BC/DA,则ABF的度数为()A15B20C25D3010、下列长度的三条线段能组成三角形的是( )A3,4,7B3,4,8C3,4,
4、5D3,3,7第卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、如图,ABC中,B20,D是BC延长线上一点,且ACD60,则A的度数是_ 度2、如图,在AB1C1中,AC1B1C1,C120,在B1C1上取一点C2,延长AB1到点B2,使得B1B2B1C2,在B2C2上取一点C3,延长AB2到点B3,使得B2B3B2C3,在B3C3上取一点C4,延长AB3到点B4,使得B3B4B3C4,按此操作进行下去,那么第2个三角形的内角AB2C2_;第n个三角形的内角ABnCn_3、如图,方格纸中是9个完全相同的正方形,则1+2的值为 _4、若一条长为24cm的细线能围成一边长等
5、于9cm的等腰三角形,则该等腰三角形的腰长为_cm5、等腰三角形中,一条边长是2cm,另一条边长是3cm,这个等腰三角形的周长是_三、解答题(10小题,每小题5分,共计50分)1、阅读下面材料:活动1利用折纸作角平分线画图:在透明纸片上画出(如图1-);折纸:让的两边QP与QR重合,得到折痕QH(如图1-);获得结论:展开纸片,QH就是的平分线(如图1-)活动2利用折纸求角如图2,纸片上的长方形ABCD,直线EF与边AB,CD分别相交于点E,F将对折,点A落在直线EF上的点处,折痕EN与AD的交点为N;将对折,点B落在直线EF上的点处,折痕EM与BC的交点为M这时的度数可知,而且图中存在互余或
6、者互补的角解答问题:(1)求的度数;(2)图2中,用数字所表示的角,哪些与互为余角?写出的一个补角解:(1)利用活动1可知,EN是的平分线,EM是的平分线,所以 , 由题意可知,是平角所以( ) (2)图2中,用数字所表示的角,所有与互余的角是: ;的一个补角是 2、在复习课上,老师布置了一道思考题:如图所示,点M,N分别在等边的边上,且,交于点Q求证:同学们利用有关知识完成了解答后,老师又提出了下列问题:(1)若将题中“”与“”的位置交换,得到的是否仍是真命题?请你给出答案并说明理由(2)若将题中的点M,N分别移动到的延长线上,是否仍能得到?请你画出图形,给出答案并说明理由3、探究与发现:如
7、图,在ABC中,BC45,点D在BC边上,点E在AC边上,且ADEAED,连接DE(1)当BAD60时,求CDE的度数;(2)当点D在BC(点B、C除外)边上运动时,试猜想BAD与CDE的数量关系,并说明理由(3)深入探究:如图,若BC,但C45,其他条件不变,试探究BAD与CDE的数量关系4、如图,在等边三角形ABC中,点D,E分别在边BC,AC上,且DEAB,过点E作EFDE,交BC的延长线于点F(1)求证:CECF;(2)若CD2,求DF的长5、如图,在ABC中,BAC90,ABAC,射线AE交BC于点P,BAE15;过点C作CDAE于点D,连接BE,过点E作EFBC交DC的延长线于点F
8、(1)求F的度数;(2)若ABE75,求证:BECF6、如图,为等边三角形,D是BC中点,CE是的外角的平分线求证:7、如图,E为BC中点,DE平分(1)求证:平分;(2)求证:;(3)求证:8、如图,在中,是的平分线,点在边上,且()求证:;()若,求的大小9、如图,点B,F,C,E在一条直线上,AB=DE,B=E,BF=CE求证:AC=DF10、在等边中,D、E是BC边上两动点(不与B,C重合)(1)如图1,求的度数;(2)点D在点E的左侧,且AD=AE,点E关于直线AC的对称点为F,连接AF,DF依题意将图2补全;求证:-参考答案-一、单选题1、C【详解】由题意根据等式的性质得出BCEF
9、,进而利用SSS证明ABC与DEF全等,利用全等三角形的性质得出ACBDFE,最后利用三角形内角和进行分析解答【分析】解:BFEC,BF+FCEC+FC,BCEF,在ABC与DEF中,ABCDEF(SSS),ACBDFE,2DFE180FGC,故选:C【点睛】本题考查全等三角形的判定与性质,其中全等三角形的判定方法有:SSS;SAS;ASA;AAS;以及HL(直角三角形的判定方法)2、C【分析】根据题意在AB上截取BE=BC,由“SAS”可证CBDEBD,可得CDB=BDE,C=DEB,可证ADE=AED,可得AD=AE,进而即可求解【详解】解:如图,在AB上截取BEBC,连接DE,BD平分A
10、BC,ABDCBD,在CBD和EBD中,CBDEBD(SAS),CDBBDE,CDEB,C2CDB,CDEDEB,ADEAED,ADAE,ABC的周长AD+AE+BE+BC+CDAB+AB+CD27,故选:C【点睛】本题考查全等三角形的判定和性质以及等腰三角形的性质,注意掌握添加恰当辅助线构造全等三角形是解题的关键3、A【分析】根据三根木条即为三角形的三边长,利用全等三角形判定定理确定唯一三角形即可得【详解】解:三根木条即为三角形的三边长,即为利用确定三角形,故选:A【点睛】题目主要考查利用全等三角形判定确定唯一三角形,熟练掌握全等三角形的判定是解题关键4、A【分析】由折叠得到B=BCD,根据
11、三角形的内角和得A+B+ACB=180,代入度数计算即可【详解】解:由折叠得B=BCD,A+B+ACB=180,65+2B+25=180,B=45,故选:A【点睛】此题考查了折叠的性质,三角形内角和定理,熟记折叠的性质是解题的关键5、B【分析】根据等腰三角形的判定定理,结合图形即可得到结论【详解】解:以点A、B为圆心,AB长为半径画弧,交直线BC于两个点,然后作AB的垂直平分线交直线BC于点,如图所示:C90,A30,是等边三角形,点重合,符合条件的点P有2个;故选B【点睛】本题主要考查等腰三角形的性质及等边三角形的性质与判定,熟练掌握等腰三角形的性质是解题的关键6、A【分析】利用基本作图得到
12、ODOCODOC,CDCD,则根据全等三角形的判定方法可根据“SSS”可判断OCDOCD,然后根据全等三角形的性质得到AOBAOB【详解】解:由作法可得ODOCODOC,CDCD,所以根据“SSS”可判断OCDOCD,所以AOBAOB故选:A【点睛】本题考查了作图基本作图和全等三角形的判定与性质,解题关键是熟练掌握基本作图和全等三角形的判定定理7、D【分析】根据ADBC,C30,利用内错角相等得出FDC=C=30,可判断正确;根据邻补角性质可求ADC=180-FDC=180-30=150,根据ADB:BDC1:2,得出方程3ADB=150,解方程可判断正确;根据EAB72,可求邻补角DAN=1
13、80-EAB=180-72=108,利用三角形内角和可求ABD=180-NAD-ADB=180-108-50=22可判断正确,利用ADBC,同位角相等的CBN=DAN=108可判断正确即可【详解】解:ADBC,C30,FDC=C=30,故正确;ADC=180-FDC=180-30=150,ADB:BDC1:2,BDC=2ADB,ADC=ADB+BDC=ADB+2ADB=3ADB=150,解得ADB=50,故正确EAB72,DAN=180-EAB=180-72=108,ABD=180-NAD-ADB=180-108-50=22,故正确ADBC,CBN=DAN=108,故正确其中正确说法的个数是4
14、个故选择D【点睛】本题考查平行线性质,角的倍分,邻补角性质,三角形内角和,一元一次方程,掌握平行线性质,邻补角性质,三角形内角和,一元一次方程地解题关键8、C【分析】根据平行线的性质和角平分线的定义以及等腰三角形的判定和性质逐个判定即可解答【详解】解:BF是AB的角平分线,DBFCBF,DEBC,DFBCBF,DBFDFB,BDDF,BDF是等腰三角形;故正确;同理,EFCE,DEDF+EFBD+CE,故正确;A50,ABC+ACB130,BF平分ABC,CF平分ACB,FBC+FCB(ABC+ACB)65,BFC18065115,故正确;当ABC为等腰三角形时,DFEF,但ABC不一定是等腰
15、三角形,DF不一定等于EF,故错误故选:C【点睛】本题主要考查等腰三角形的性质、角平分线的定义及平行线的性质等知识点,根据两直线平行、内错角相等以及等角对等边来判定等腰三角形是解答本题的关键9、A【分析】先求出EFD=60,ABC=45,由BCAD,得到EFD=FBC=60,则ABF=FBC-ABC=15【详解】解:DBAC90,E30,C45,EFD=60,ABC=45,BCAD,EFD=FBC=60,ABF=FBC-ABC=15,故选A【点睛】本题主要考查了直角三角形两锐角互余,平行线的性质,熟知直角三角形两锐角互余是解题的关键10、C【分析】根据组成三角形的三边关系依次判断即可【详解】A
16、、 3,4,7中3+4=7,故不能组成三角形,与题意不符,选项错误B、 3,4,8中3+48,故不能组成三角形,与题意不符,选项错误C、 3,4,5中任意两边之和都大于第三边,任意两边之差都小于第三边,故能组成三角形,符合题意,选项正确D、 3,3,7中3+37,故不能组成三角形,与题意不符,选项错误故选:C【点睛】本题考查了三角形的三边关系,在一个三角形中,任意两边之和大于第三边,任意两边之差小于第三边二、填空题1、40【分析】直接根据三角形外角的性质可得结果【详解】解:B20,ACD60,ACD是ABC的外角,ACD=B+A,故答案为:【点睛】本题考查了三角形外角的性质,熟知三角形的一个外
17、角等于与它不相邻的两个内角的和是解本题的关键2、40 【分析】先根据等腰三角形的性质求出C1B1A的度数,再根据三角形外角的性质及等腰三角形的性质分别求出B1B2C2,C3B3B2及C4B3B2的度数,找出规律即可得出ABnCn的度数【详解】解:AB1C1中,AC1B1C1,C120,C1B1A ,B1B2B1C2,C1B1A是B1B2C2的外角,B1B2C2 ;同理可得,C3B3B220,C4B3B210,ABnCn故答案为:40,【点睛】本题考查的是等腰三角形的性质及三角形外角的性质,根据题意得出B1B2C2,C3B3B2及C4B3B2的度数,找出规律是解答此题的关键3、【分析】如图(见解
18、析),先根据三角形全等的判定定理证出,再根据全等三角形的性质可得,由此即可得出答案【详解】解:如图,在和中,故答案为:【点睛】本题考查了三角形全等的判定定理与性质等知识点,正确找出两个全等三角形是解题关键4、9或7.5或9【分析】分9是底边和腰长两种情况,分别列出方程,求解即可得到结果【详解】解:若9cm为底时,腰长应该是(24-9)=7.5cm,故三角形的三边分别为7.5cm、7.5cm、9cm,7.5+7.5=159,故能围成等腰三角形;若9cm为腰时,底边长应该是24-92=6,故三角形的三边为9cm、9cm、6cm,6+9=159,以9cm、9cm、6cm为三边能围成三角形,综上所述,
19、腰长是9cm或7.5cm,故答案为:9或7.5【点睛】本题考查了等腰三角形的性质,三角形的周长,掌握等腰三角形的两腰相等是解题的关键5、或【分析】因为已知长度为和两边,没有明确是底边还是腰,所以有两种情况,需要分类讨论【详解】解:当为底时,其它两边都为,、可以构成三角形,周长为;当为底时,其它两边都为,、可以构成三角形,周长为;故答案为:或【点睛】本题考查了等腰三角形的性质和三角形的三边关系;已知没有明确腰和底边的题目一定要想到两种情况,解题的关键是利用分类进行讨论,还应验证各种情况是否能构成三角形进行解答,这点非常重要三、解答题1、(1),90;(2)1、2;CME或NEB【分析】【详解】解
20、:(1)折叠EN是的平分线,EM是的平分线,NEA=NEA=,BEM=BEM=,是平角NEM=NEA+BEM=+,故答案为:,90;(2)1=2,AEN=3,NEM=90,AEN+1=NEM=90,互为余角为1和2,故答案为:1、2;AEN=3,3+NEB=180,AEN的补角为NEBB=90,2+EMB=90,3=EMB,CME+EMB=180,3+CME=180,AEN的补角为CME, AEN的补角为CME或NEB故答案为CME或NEB【点睛】本题考查折叠性质,平角,角平分线,余角性质,补角性质,掌握折叠性质,平角,角平分线,余角性质,补角性质是解题关键2、(1)仍是真命题,证明见解析(2
21、)仍能得到,作图和证明见解析【分析】(1)由角边角得出和全等,对应边相等即可(2)由(1)问可知BM=CN,故可由边角边得出和全等,对应角相等,即可得出(1)在和中有故结论仍为真命题(2)BM=CNCM=ANAB=AC,在和中有故仍能得到,如图所示【点睛】本题考查了全等三角形的判定和性质,从判定两个三角形全等的方法可知,要判定两个三角形全等,需要知道这两个三角形分别有三个元素(其中至少一个元素是边)对应相等,这样就可以利用题目中的已知边角迅速、准确地确定要补充的边角,有目的地完善三角形全等的条件,从而得到判定两个三角形全等的思路3、(1)30;(2)BAD2CDE,理由见解析;(3)BAD2C
22、DE【分析】(1)根据三角形的外角的性质求出ADC,结合图形计算即可;(2)设BADx,根据三角形的外角的性质求出ADC,结合图形计算即可;(3)设BADx,仿照(2)的解法计算【详解】解:(1)ADC是ABD的外角,ADCBAD+B105,DAEBACBAD30,ADEAED75,CDE1057530;(2)BAD2CDE,理由如下:设BADx,ADCBAD+B45+x,DAEBACBAD90x,ADEAED,CDE45+xx,BAD2CDE;(3)设BADx,ADCBAD+BB+x,DAEBACBAD1802Cx,ADEAEDC+x,CDEB+x(C+x)x,BAD2CDE【点睛】本题考查
23、了三角形内角和和外角的性质,解题关键是熟练掌握三角形内角和和外角性质,通过设参数计算,发现角之间的关系4、(1)证明见解析;(2)4【分析】(1)根据等边三角形的性质和平行线的性质可证得EDCECDDEC60,再根据直角定义和三角形的外角性质证得FFEC30,利用等角对等边即可证得结论;(2)由等角对等边可知CE=DC=2,结合(1)中结论即可求解(1)证明:ABC是等边三角形,ABACB60DEAB,BEDC60,ACED60,EDCECDDEC60,EFED,DEF90,F30F+FECECD60,FFEC30,CECF(2)解:由(1)可知EDCECDDEC60,CEDC2又CECF,C
24、F2DFDC+CF2+24【点睛】本题考查等边三角形的性质、等腰三角形的判定、平行线的性质、三角形的外角性质、线段的和与差,熟练掌握相关知识的联系与运用是解答的关键5、(1);(2)证明见详解【分析】(1)根据三角形内角和及等腰三角形的性质可得,由各角之间的关系及三角形内角和定理可得,最后由平行线的性质即可得出;(2)由题意及各角之间的关系可得,得出,利用平行线的判定定理即可证明【详解】解:(1),;(2),由(1)可得,(内错角相等,两直线平行)【点睛】题目主要考查平行线的判定与性质,三角形内角和定理等,熟练掌握平行线的判定与性质是解题关键6、证明见解析.【分析】过D作DGAC交AB于G,由
25、等边三角形的性质和平行线的性质得到BDGBGD60,于是得到BDG是等边三角形,再证明AGDDCE即可得到结论.【详解】证明:过D作DGAC交AB于G,ABC是等边三角形,ABAC,BACBBAC60,又DGAC,BDGBGD60,BDG是等边三角形,AGD180BGD120,DGBD,点D为BC的中点,BDCD,DGCD,EC是ABC外角的平分线,ACE(180ACB)60,BCEACBACE120AGD,ABAC,点D为BC的中点,ADBADC90,又BDG60,ADE60,ADGEDC30,在AGD和ECD中,AGDECD(ASA)ADDE【点睛】本题是三角形综合题,主要考查了平行线的性
26、质,全等三角形的性质与判定,等边三角形的判定与性质,熟练掌握全等三角形的判定与性质是解题的关键7、(1)见解析;(2)见解析;(3)见解析【分析】(1)延长DE交AB延长线于F,由B=C=90,推出ABCD,则CDE=F,再由DE平分ADC,即可推出ADF=F,得到AD=AF,即ADF是等腰三角形,然后证明CDEBFE得到DE=FE,即E是DF的中点,即可证明AE平分BAD;(2)由(1)即可用三线合一定理证明;(3)由CDEBFE,得到CD=BF,则AD=AF=AB+BF=AB+CD【详解】解:(1)如图所示,延长DE交AB延长线于F,B=C=90,ABCD,CDE=F,DE平分ADC,CD
27、E=ADE,ADF=F,AD=AF,ADF是等腰三角形,E是BC的中点,CE=BE,CDEBFE(AAS),DE=FE,E是DF的中点,AE平分BAD;(2)由(1)得ADF是等腰三角形,AD=AF,E是DF的中点,AEDE;(3)CDEBFE,CD=BF,AD=AF=AB+BF=AB+CD【点睛】本题主要考查了平行线的性质与判定,全等三角形的性质与判定,等腰三角形的性质与判定,熟知相关知识是解题的关键8、()见解析;()【分析】()由CD是的平分线得出,由得出从而得出,由平行线的判断即可得证;()由三角形内角和求出,由角平分线得出,由三角形内角和求出即可得出答案【详解】()CD是的平分线,;
28、(),【点睛】本题考查平行线的判定以及三角形内角和定理,掌握相关知识是解题的关键9、见解析【分析】先由BF=CE说明BC= EF然后运用SAS证明ABCDEF,最后运用全等三角形的性质即可证明【详解】证明:BF= CE, BC= EF 在ABC和DEF中,ABCDEF(SAS) AC=DF【点睛】本题主要考查了全等三角形的判定与性质,正确证明ABCDEF是解答本题的关键10、(1);(2)作图见解析;证明见解析【分析】(1)等边三角形中,由知,进而求出的值;(2)作图见详解; ,点E,F关于直线对称,为等边三角形,进而可得到【详解】解:(1)为等边三角形(2)补全图形如图所示,证明:为等边三角形 ,点E,F关于直线对称,即为等边三角形【点睛】本题考察了等边三角形的判定与性质,等腰三角形的性质,轴对称的性质解题的关键在于角度的转化