2022年沪教版七年级数学第二学期第十四章三角形课时练习练习题(无超纲).docx

上传人:可****阿 文档编号:32538562 上传时间:2022-08-09 格式:DOCX 页数:37 大小:1.03MB
返回 下载 相关 举报
2022年沪教版七年级数学第二学期第十四章三角形课时练习练习题(无超纲).docx_第1页
第1页 / 共37页
2022年沪教版七年级数学第二学期第十四章三角形课时练习练习题(无超纲).docx_第2页
第2页 / 共37页
点击查看更多>>
资源描述

《2022年沪教版七年级数学第二学期第十四章三角形课时练习练习题(无超纲).docx》由会员分享,可在线阅读,更多相关《2022年沪教版七年级数学第二学期第十四章三角形课时练习练习题(无超纲).docx(37页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。

1、沪教版七年级数学第二学期第十四章三角形课时练习 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、如图,在中,AD是角平分线,且,若,则的度数是( )A45B50C52D582、已知三角形的两边长分别为2cm

2、和3cm,则第三边长可能是( )A6cmB5cmC3cmD1cm3、如图,已知,要使,添加的条件不正确的是( )ABCD4、下列四个命题是真命题的有()同位角相等;相等的角是对顶角;直角三角形两个锐角互余;三个内角相等的三角形是等边三角形A1个B2个C3个D4个5、如图,ADBC,C30,ADB:BDC1:2,EAB72,以下四个说法:CDF30;ADB50;ABD22;CBN108其中正确说法的个数是()A1个B2个C3个D4个6、下列叙述正确的是( )A三角形的外角大于它的内角B三角形的外角都比锐角大C三角形的内角没有小于60的D三角形中可以有三个内角都是锐角7、等腰三角形的一个顶角是80

3、,则它的底角是( )A40B50C60D708、我们称网格线的交点为格点如图,在44的长方形网格中有两个格点A、B,连接AB,在网格中再找一个格点C,使得ABC是等腰直角三角形,则满足条件的格点C的个数是()A3B4C5D69、一副三角板如图放置,点A在DF的延长线上,DBAC90,E30,C45,若BC/DA,则ABF的度数为()A15B20C25D3010、如图,已知为的外角,那么的度数是( )A30B40C50D60第卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、已知ABC的面积是12,AB=AC=5,AD是BC边上的中线,E,P分别是AC,AD上的动点,则CP+

4、EP的最小值为_2、如图,在等边三角形中,是边的高线,延长至点,使,则BE的长为_3、如图,在AOB和COD中,OAOB,OCOD,OAOC,AOBCOD50,连接AC、BD交于点M,连接OM下列结论:ACBD,AMB50;OM平分AOD;MO平分AMD其中正确的结论是 _(填序号)4、如图,在中,BD和CD分别是和的平分线,EF过点D,且,若,则EF的长为_5、如图,一把直尺的一边缘经过直角三角形的直角顶点,交斜边于点;直尺的另一边缘分别交、于点、,若,则_度三、解答题(10小题,每小题5分,共计50分)1、阅读填空,将三角尺(MPN,MPN=90)放置在ABC上(点P在ABC内),如图所示

5、,三角尺的两边PM、PN恰好经过点B和点C,我们来研究ABP与ACP是否存在某种数量关系(1)特例探索:若A=50,则PBC+PCB= 度,ABP+ACP= 度(2)类比探索:ABP、ACP、A的关系是 (3)变式探索:如图所示,改变三角尺的位置,使点P在ABC外,三角尺的两边PM、PN仍恰好经过点B和点C,则ABP、ACP、A的关系是 2、如图,RtACB中,ACB90,ACBC,E点为射线CB上一动点,连结AE,作AFAE且AFAE(1)如图1,过F点作FDAC交AC于D点,求证:FDBC;(2)如图2,连结BF交AC于G点,若AG3,CG1,求证:E点为BC中点(3)当E点在射线CB上,

6、连结BF与直线AC交子G点,若BC4,BE3,则 (直接写出结果)3、已知:在ABC中,AD平分BAC,AE=AC求证:ADCE4、如图,等边ABC中,点D在BC上,CE=CD,BCE=60,连接AD、BE(1)如图1,求证:AD=BE;(2)如图2,延长AD交BE于点F,连接DE、CF,在不添加任何辅助线和其它字母的情况下,请直接写出等于120的角5、已知:直线AB、CR被直线UV所截,直线UV交直线AB于点B,交直线CR于点D,ABU+CDV180(1)如图1,求证:ABCD;(2)如图2,BEDF,MEBABE+5,FDR35,求MEB的度数;(3)如图3,在(2)的条件下,点N在直线A

7、B上,分别连接EN、ED,MGEN,连接ME,GMEGEM,EBD2NEG,EB平分DEN,MHUV于点H,若EDCCDB,求GMH的度数6、如图,在等边三角形ABC中,点D,E分别在边BC,AC上,且DEAB,过点E作EFDE,交BC的延长线于点F(1)求证:CECF;(2)若CD2,求DF的长7、如图,四边形中,于点(1)如图1,求证:;(2)如图2,延长交的延长线于点,点在上,连接,且,求证:;(3)如图3,在(2)的条件下,点在的延长线上,连接,交于点,连接,且,当,时,求的长8、如图,是等边三角形,分别交AB,AC于点D,E(1)求证:是等边三角形;(2)点F在线段DE上,点G在外,

8、求证:9、如图,在中,BD是的角平分线,点E在AB边上,求的周长10、如图,在中,点D、E分别在边AB、AC上,BE与CD交于点F,求和的度数-参考答案-一、单选题1、A【分析】根据角平分线性质求出DCA,再根据等腰三角形的性质和三角形的内角和定理求解C和B即可【详解】解:AD是角平分线,DCA=30,AD=AC,C=(180DCA)2=75,B=180BACC=1806075=45,故选:A【点睛】本题考查角平分线的性质、等腰三角形的性质、三角形的内角和定理,熟练掌握等腰三角形的性质是解答的关键2、C【分析】根据在三角形中任意两边之和大于第三边,任意两边之差小于第三边即可求解【详解】解:设第

9、三边长为xcm,根据三角形的三边关系可得:3-2x3+2,解得:1x5,只有C选项在范围内故选:C【点睛】本题考查了三角形的三边关系,关键是掌握第三边的范围是:大于已知的两边的差,而小于两边的和3、D【分析】已知条件ABAC,还有公共角A,然后再结合选项所给条件和全等三角形的判定定理进行分析即可【详解】解:A、添加BDCE可得ADAE,可利用利用SAS定理判定ABEACD,故此选项不合题意;B、添加ADCAEB可利用AAS定理判定ABEACD,故此选项不合题意;C、添加BC可利用ASA定理判定ABEACD,故此选项不合题意;D、添加BECD不能判定ABEACD,故此选项符合题意;故选:D【点睛

10、】本题考查三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL(直角三角形),掌握三角形全等的判定方法是解题关键4、B【分析】利用平行线的性质、对顶角的定义、直角三角形的性质及等边三角形的性质分别判断后即可确定正确的选项【详解】两直线平行,同位角相等,故错误,是假命题;相等的角是对顶角,错误,是假命题;直角三角形两个锐角互余,正确,是真命题;三个内角相等的三角形是等边三角形,正确,是真命题,综上所述真命题有2个,故选:B【点睛】本题考查了命题真假的判断,要说明一个命题是正确的,需要根据命题的题设和已学的有关公理、定理进行说明、推理、证明,正确的命题叫做真命

11、题,错误的命题叫做假命题5、D【分析】根据ADBC,C30,利用内错角相等得出FDC=C=30,可判断正确;根据邻补角性质可求ADC=180-FDC=180-30=150,根据ADB:BDC1:2,得出方程3ADB=150,解方程可判断正确;根据EAB72,可求邻补角DAN=180-EAB=180-72=108,利用三角形内角和可求ABD=180-NAD-ADB=180-108-50=22可判断正确,利用ADBC,同位角相等的CBN=DAN=108可判断正确即可【详解】解:ADBC,C30,FDC=C=30,故正确;ADC=180-FDC=180-30=150,ADB:BDC1:2,BDC=2

12、ADB,ADC=ADB+BDC=ADB+2ADB=3ADB=150,解得ADB=50,故正确EAB72,DAN=180-EAB=180-72=108,ABD=180-NAD-ADB=180-108-50=22,故正确ADBC,CBN=DAN=108,故正确其中正确说法的个数是4个故选择D【点睛】本题考查平行线性质,角的倍分,邻补角性质,三角形内角和,一元一次方程,掌握平行线性质,邻补角性质,三角形内角和,一元一次方程地解题关键6、D【分析】结合直角三角形,钝角三角形,锐角三角形的内角与外角的含义与大小逐一分析即可.【详解】解:三角形的外角不一定大于它的内角,锐角三角形的任何一个外角都大于内角,

13、故A不符合题意;三角形的外角可以是锐角,不一定比锐角大,故B不符合题意;三角形的内角可以小于60,一个三角形的三个角可以为: 故C不符合题意;三角形中可以有三个内角都是锐角,这是个锐角三角形,故D符合题意;故选D【点睛】本题考查的是三角形的的内角与外角的含义与大小,掌握“直角三角形,钝角三角形,锐角三角形的内角与外角”是解本题的关键.7、B【分析】依据三角形的内角和是180以及等腰三角形的性质即可解答【详解】解:(180-80)2=1002=50;答:底角为50故选:B【点睛】本题主要考查三角形的内角和定理及等腰三角形的两个底角相等的特点8、A【分析】根据题意,结合图形,分两种情况讨论:AB为

14、等腰直角ABC底边;AB为等腰直角ABC其中的一条腰【详解】解:如图:分情况讨论:AB为等腰直角ABC底边时,符合条件的格点C点有0个;AB为等腰直角ABC其中的一条腰时,符合条件的格点C点有3个故共有3个点,故选:A【点睛】本题考查了等腰三角形的性质和判定;解答本题关键是根据题意,画出符合实际条件的图形,数形结合的思想是数学解题中很重要的解题思想9、A【分析】先求出EFD=60,ABC=45,由BCAD,得到EFD=FBC=60,则ABF=FBC-ABC=15【详解】解:DBAC90,E30,C45,EFD=60,ABC=45,BCAD,EFD=FBC=60,ABF=FBC-ABC=15,故

15、选A【点睛】本题主要考查了直角三角形两锐角互余,平行线的性质,熟知直角三角形两锐角互余是解题的关键10、B【分析】根据三角形的外角性质解答即可【详解】解:ACD60,B20,AACDB602040,故选:B【点睛】此题考查三角形的外角性质,关键是根据三角形外角性质解答二、填空题1、【分析】作BMAC于M,交AD于P,根据等腰三角形的性质得到ADBC,求得点B,C关于AD为对称,得到BP=CP,根据垂线段最短得出CP+EE=BP+EP=BEBM,根据数据线的面积公式即可得到结论【详解】解:作BMAC于M,交AD于P,ABC是等腰三角形,AD是BC边上的中线,ADBC,AD是BC的垂直平分线,点B

16、,C关于AD为对称,BP=CP,根据垂线段最短得出:CP+EP=BP+EP=BEBM,AC=BC=5,SABC=BCAD=ACBM=12,BM=AD=,即EP+CP的最小值为,故答案为:【点睛】本题考查了等腰三角形的性质和轴对称等知识,熟练掌握等腰三角形和轴对称的性质是本题的关键2、3【分析】由等腰三角形三线合一的性质,得到AD=DC=1,由BE=BC+CE不难求解【详解】解:三角形是等边三角形,BCAC2,又 是边的高线,DC, 1,故答案为:3.【点睛】本题考查了等边三角形的性质,掌握等腰三角形三线合一的性质是解本题的关键3、【分析】由证明得出,正确;由全等三角形的性质得出,由三角形的外角

17、性质得:,得出,正确;作于,于,如图所示:则,利用全等三角形对应边上的高相等,得出,由角平分线的判定方法得出平分,正确;假设平分,则,由全等三角形的判定定理可得,得,而,所以,而,故错误;即可得出结论【详解】解:,即,在和中,故正确;,由三角形的外角性质得:,故正确;作于,于,如图所示,则,平分,故正确;假设平分,则,在与中,而,故错误;所以其中正确的结论是故答案为:【点睛】本题考查了全等三角形的判定与性质、三角形的外角性质、角平分线的判定等知识;证明三角形全等是解题的关键4、7【分析】根据角平分线的定义和平行线的性质证明EBD=EDB,FDC=FCD,得到BE=DE,CF=DF,即可求解【详

18、解】解:EFBC,EDB=DBC,FDC=DCB,又BD和CD分别是ABC和ACB的平分线,EBD=DBC,FCD=DCB,EBD=EDB,FDC=FCD,BE=DE,CF=DF,又BE=3,CF=4,EF=DE+DF=BE+CF=7故答案为:7【点睛】本题主要考查了平行线的性质,角平分的定义,等腰三角形的性质与判定,熟知相关知识是解题的关键5、20【分析】利用平行线的性质求出1,再利用三角形外角的性质求出DCB即可【详解】解:EFCD,1是DCB的外角,1-B=50-30=20,故答案为:20【点睛】本题考查了平行线的性质,三角形外角的性质等知识,解题的关键是熟练掌握基本知识三、解答题1、(

19、1)90,40 ;(2)ABP+ACP+A=90;(3)A+ACPABP=90【分析】(1)由三角形内角和为180计算和中的角的关系即可(2)由(1)所得即可得出ABP、ACP、A的关系为ABP+ACP+A=90(3)由三角形外角的性质即可推出A+ACPABP=90【详解】(1)在中MPN=90PBC+PCB=180-MPN=180-90=90在中A+ABC+ACB=180又ABC=PBC+ABP,ACB=ACP+BCPA+PBC+ABP +ACP+BCP =180PBC+PCB=90,A=50ABP +ACP=180-90-50=40(2)由(1)问可知A+PBC+ABP +ACP+BCP

20、=180又PBC+PCB=90A+ABP +ACP=180-(PBC+PCB)=180-90=90(3)如图所示,设PN与AB交于点HA+ACP=AHP又ABP+MPN =AHPA+ACP=ABP+MPN又MPN =90A+ACP =90+ABPA+ACPABP=90【点睛】本题考查了三角形的性质以及三角尺的角度计算问题,三角板的角度分别为90,45,45;90,60,30两种直角三角尺,三角形内角和是180,三角形的一个外角等于与它不相邻的两个内角的和2、(1)证明见解析;(2)证明见解析;(3)或【分析】(1)证明AFDEAC,根据全等三角形的性质得到DF=AC,等量代换证明结论;(2)作

21、FDAC于D,证明FDGBCG,得到DG=CG,求出CE,CB的长,得到答案;(3)过F作FDAG的延长线交于点D,根据全等三角形的性质得到CG=GD,AD=CE=7,代入计算即可【详解】(1)证明:FDAC,FDA=90,DFA+DAF=90,同理,CAE+DAF=90,DFA=CAE,在AFD和EAC中,AFDEAC(AAS),DF=AC,AC=BC,FD=BC;(2)作FDAC于D,由(1)得,FD=AC=BC,AD=CE,在FDG和BCG中,FDGBCG(AAS),DG=CG=1,AD=2,CE=2,BC=AC=AG+CG=4,E点为BC中点;(3)当点E在CB的延长线上时,过F作FD

22、AG的延长线交于点D,BC=AC=4,CE=CB+BE=7,由(1)(2)知:ADFECA,GDFGCB,CG=GD,AD=CE=7,CG=DG=1.5,AG=CG+AC=5.5,同理,当点E在线段BC上时,AG= AC -CG+=2.5,故答案为:或【点睛】本题考查的是全等三角形的判定和性质,掌握全等三角形的判定定理和性质定理是解题的关键3、见解析【分析】先根据角平分线的定义得到BAD=BAC,再根据等腰三角形的性质和三角形外角定理得到E=BAC,从而得到BAD=E,即可证明ADCE【详解】解:AD平分BAC,BAD=BAC,AE=AC,E=ACE,E+ACE=BAC,E=BAC,BAD=E

23、,ADCE【点睛】本题考查了角平分线的定义,等腰三角形的性质,平行线的判定,三角形外角定理,熟知相关定理并灵活应用是解题关键4、(1)见解析;(2)等于120的角有BFC、BDE、DFE=120【分析】(1)利用SAS证明ADCBEC,即可证明AD=BE;(2)证明CDE为等边三角形,可求得BDE=120;利用全等三角形的性质可求得BFD=BCA=60,推出DFE=120;同理可推出BFC=AFC+BFD=120【详解】(1)证明:等边ABC中,CA=CB,ACB=60,CE=CD,BCE=60,ADCBEC(SAS),AD=BE;(2)等于120的角有BFC、BDE、DFE=120CE=CD

24、,BCE=60,CDE为等边三角形,CDE=60,BDE=120;ADCBEC,DAC=EBC,又BDF=ADC,BFD=BCA=60,DFE=120;同理可求得AFC=ABC=60,BFC=AFC+BFD=120;综上,等于120的角有BFC、BDE、DFE=120【点睛】本题考查了全等三角形的判定和性质,等边三角形的判定和性质,熟记各图形的性质并准确识图是解题的关键5、(1)见详解;(2)MEB40,(3)GMH=80【分析】(1)根据等角的补角性质得出ABD=CDV,根据同位角相等两直线平行可得ABCD;(2)根据ABCD;利用内错角相等得出ABD=RDB,根据BEDF,得出EBD=FD

25、B,利用等量减等量差相等得出ABE=FDR,根据FDR35,可得ABE=FDR=35即可;(3)设ME交AB于S,根据MGEN,得出NES=GMS=GES,设NES=y,可得NEG=NES+GES=2NES=2y,根据EBD2NEG,得出EBD =4NES=4y,根据EDCCDB,设EDC=x,得出CDB=7x,根据ABCD,得出GBE+EBD+CDB=180,可得35+4y+7x=180根据三角形内角和BDE=BDC-EDC=7x-x=6x,BED=180-EBD-EDB=180-4y-6x,利用EB平分DEN,得出y+40=180-4y-6x,解方程组,解得,可证MEUV,根据MHUV,可

26、求SMH=90,SMG=NES=10即可【详解】(1)证明:ABU+ABD=180,ABU+CDV180ABU=180-ABD,CDV180-ABU,ABD=CDV,ABCD;(2)解:ABCD;ABD=RDB,ABE+EBD=FDB+FDR,BEDF,EBD=FDB,ABE=FDR,FDR35,ABE=FDR=35,MEBABE+5=35+5=40,(3)解:设ME交AB于S,MGEN,NES=GMS=GES,设NES=y,EBD2NEGNEG=NES+GES=2NES=2y,EBD =4NES=4y,EDCCDB,设EDC=xCDB=7x,ABCD,ABD+CDB=180,即GBE+EBD

27、+CDB=180,35+4y+7x=180,BDE=BDC-EDC=7x-x=6x,BED=180-EBD-EDB=180-4y-6x,EB平分DEN,NEB=BED,NEB=NES+SEB=y+40,y+40=180-4y-6x,解得,EBD=4y=40=MEB,MEUV,MHUV,MHME,SMH=90,SMG=NES=10,GMH=90-SMG=90-10=80【点睛】本题考查平行线判定与性质,三角形内角和,垂直性质,角平分线定义,角的倍分,二元一次方程组,掌握平行线判定与性质,三角形内角和,垂直性质,角平分线定义,角的倍分,二元一次方程组是解题关键6、(1)证明见解析;(2)4【分析】

28、(1)根据等边三角形的性质和平行线的性质可证得EDCECDDEC60,再根据直角定义和三角形的外角性质证得FFEC30,利用等角对等边即可证得结论;(2)由等角对等边可知CE=DC=2,结合(1)中结论即可求解(1)证明:ABC是等边三角形,ABACB60DEAB,BEDC60,ACED60,EDCECDDEC60,EFED,DEF90,F30F+FECECD60,FFEC30,CECF(2)解:由(1)可知EDCECDDEC60,CEDC2又CECF,CF2DFDC+CF2+24【点睛】本题考查等边三角形的性质、等腰三角形的判定、平行线的性质、三角形的外角性质、线段的和与差,熟练掌握相关知识

29、的联系与运用是解答的关键7、(1)见解析;(2)见解析;(3)2【分析】(1)过点B作于点Q,根据AAS证明得,再证明四边形是矩形得BQ=CG,从而得出结论;(2) 在GF上截取GH=GE,连接AH,证明AH=FH,GE=GH即可;(3) 过点A作于点P,在FC上截取,连接,证明得,可证明AC是EH的垂直平分线,再证明和得可求出,从而可得结论【详解】解:(1)证明:过点B作于点Q,如图1又,四边形是矩形;(2)在GF上截取GH=GE,连接AH,如图2,又(3)过点A作于点P,在FC上截取,连接,如图3,由(1)、(2)知,AC是EH的垂直平分线,又, ,即 ,即 在和中,AH=AMHAB=MA

30、DAB=AD 【点睛】本题考查的是全等三角形的判定和性质,掌握全等三角形的判定定理和性质定理是解题的关键8、(1)见详解;(2)见详解【分析】(1)由题意易得,然后根据平行线的性质可得,进而问题可求证;(2)连接AG,由题意易得AB=AC,然后可知ABFACG,则有AF=AG,进而可得FAG=60,最后问题可求证【详解】证明:(1)是等边三角形,DEBC,是等边三角形;(2)连接AG,如图所示:是等边三角形,AB=AC,ABFACG(SAS),是等边三角形,【点睛】本题主要考查全等三角形及等边三角形的性质与判定,熟练掌握全等三角形及等边三角形的性质与判定是解题的关键9、【分析】由题意结合角平分线性质和全等三角形判定得出,进而依据的周长进行求解即可.【详解】解:,,BD是的角平分线,,在和中,,,的周长.【点睛】本题考查全等三角形的判定与性质以及角平分线性质,熟练掌握利用全等三角形的判定与性质以及角平分线性质进行边的等量替换是解题的关键.10、87,40【分析】根据三角形外角的性质可得,代入计算即可求出,再根据三角形内角和定理求解即可【详解】解:,【点睛】本题考查了三角形内角和和外角的性质,解题关键是准确识图,理清角之间的关系,准确进行计算

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 应用文书 > 策划方案

本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

工信部备案号:黑ICP备15003705号© 2020-2023 www.taowenge.com 淘文阁