《精品解析2022年人教版九年级数学下册第二十八章-锐角三角函数综合测试试题(无超纲).docx》由会员分享,可在线阅读,更多相关《精品解析2022年人教版九年级数学下册第二十八章-锐角三角函数综合测试试题(无超纲).docx(27页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、人教版九年级数学下册第二十八章-锐角三角函数综合测试 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、某山坡坡面的坡度,小刚沿此山坡向上前进了米,小刚上升了( )A米B米C米D米2、如图,河坝横断面迎水坡的
2、坡比为:,坝高m,则的长度为( )A6mBmC9mDm3、如图,某建筑物AB在一个坡度为i1:0.75的山坡BC上,建筑物底部点B到山脚点C的距离BC20米,在距山脚点C右侧同一水平面上的点D处测得建筑物顶部点A的仰角是42,在另一坡度为i1:2.4的山坡DE上的点E处测得建筑物顶部点A的仰角是24,点E到山脚点D的距离DE26米,若建筑物AB和山坡BC、DE的剖面在同一平面内,则建筑物AB的高度约为()(参考数据:sin240.41,cos240.91,tan240.45,sin420.67cos420.74,tan420.90)A36.7米 B26.3 米 C15.4米 D25.6 米4、
3、在RtABC中,C90,BC3,AC4,那么cosB的值等于()ABCD5、将矩形纸片ABCD按如图所示的方式折起,使顶点C落在C处,若AB = 4,DE = 8,则sinCED为()A2BCD6、在ABC中, ,则ABC一定是( )A直角三角形B等腰三角形C等边三角形D等腰直角三角形7、如图要测量小河两岸相对的两点P,A的距离,点P位于点A正北方向,点C位于点A的北偏西46,若测得PC50米,则小河宽PA为()A50sin44米B50cos44C50tan44米D50tan46米8、如图1所示,DEF中,DEF90,D30,B是斜边DF上一动点,过B作ABDF于B,交边DE(或边EF)于点A
4、,设BDx,ABD的面积为y,图2是y与x之间函数的图象,则ABD面积的最大值为( )A8B16C24D489、如图所示,某村准备在坡角为的山坡上栽树,要求相邻两棵树之间的水平距离为(m),那么这两棵树在坡面上的距离AB为( )Amcos(m)B(m)Cmsin(m)D(m)10、如图,等边三角形ABC和正方形ADEF都内接于O,则AD:AB()ABCD第卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、如图,在44的正方形网格中,ABC的顶点都在边长为1的小正方形的顶点上,则tanACB的值为 _2、如图,在中,以为边向外作等边,则的长为_3、如图,中,点D、点E分别在A
5、B、AC上,连接CD、ED,则_4、如图,在A处测得点P在北偏东60方向上,在B处测得点P在北偏东30方向上,若AP6千米,则A,B两点的距离为 _千米5、助推轮椅可以轻松解决起身困难问题如图1是简易结构图,该轮椅前O1和后轮O2的半径分别为0.6dm和3dm,竖直连接处CO11dm,水平连接处BD与拉伸装置DE共线,BD2dm,座面GF平行于地面且GFDE4.8dm,HF是轮椅靠背,ADE始终保持角度不变初始状态时,拉伸杆AD的端点A在点B正上方且距地面2.2dm,则tanADB的值为 _如图2,踩压拉伸杆AD,装置随之运动,当AD踩至与BD重合时,点E,F,H分别运动到点E,F,H,此时座
6、面GF和靠背FH连成一直线,点H运动到最高点H,且H,F,O2三点正好共线,则HO2的长为 _dm三、解答题(5小题,每小题10分,共计50分)1、计算:2、3、在某段限速公路BC上(公路视为直线),交通管理部门规定汽车的最高行驶速度不能超过60km/h,并在离该公路100m处设置一个检测点A在如图所示的直角坐标系中,点A位于y轴上,测速路段BC在x轴上,点B在A的北偏西60方向上,点C在A的北偏东45方向上,另外一条高速公路在y轴上,AO为其中的一段(1)一辆汽车从点B匀速行驶到点C所用的时间是15s,通过计算,判断该汽车在这段限速公路上是否超速(参考数据:1.7);(2)若一辆大货车在限速
7、公路上由C处向西行驶,一辆小汽车在高速公路上由A处向北行驶,设两车同时开出且小汽车的速度是大货车速度的2倍,求两车在匀速行驶过程中的最近距离4、在O中,四边形ABCD是平行四边形(1)求证:BA是O的切线;(2)若AB6,求O的半径;求图中阴影部分的面积5、计算:-参考答案-一、单选题1、B【分析】设出垂直高度,表示出水平距离,利用勾股定理求解即可【详解】解:设小刚上升了米,则水平前进了米根据勾股定理可得:解得即此时该小车离水平面的垂直高度为50米故选:B【点睛】考查了解直角三角形的应用坡度坡角问题和勾股定理,熟悉且会灵活应用公式:坡度垂直高度水平宽度是解题的关键2、A【分析】根据迎水坡的坡比
8、为:,可知,求出的长度,运用勾股定理可得结果【详解】解:迎水坡的坡比为:,即,解得,由勾股定理得,故选:【点睛】本题考查了解直角三角形的实际应用,勾股定理,熟知坡比的意义是解本题的关键3、D【分析】如图所示,过E点做CD平行线交AB线段为点H,标AB线段和CD线段相交点为G和H由坡度为i1:0.75,BC20可得BG=16,GC=12,由坡度为 i1:2.4,DE26可得DF=24,EF=10,分别在在中满足,在中满足化简联立得AB=25.6【详解】如图所示,过E点做CD平行线交AB线段为点H,标AB线段和CD线段相交点为G和H在中BC20,坡度为i1:0.75,在中DE26,坡度为 i1:2
9、.4,在中满足,在中满足,即,其中BG=16、BG=12、BH=BG-EF=6、DF=24,代入化简得,令2-有,AB=25.6故选:D【点睛】本题考查了解直角三角形的应用,利用三角形的坡度和斜边长通过勾股定理可以求得三角形各边长度,再根据角度列含两个未知数的二元一次方程组,正确的列方程求解是解题的关键4、D【分析】根据题意画出图形,求出AB的值,进而利用锐角三角函数关系求出即可【详解】解:如图,在RtABC中,C90,BC3,AC4,cosB故选:D【点睛】本题考查了三角函数的定义,熟知余弦函数的定义是解题关键5、B【分析】由折叠可知,CD=CD=4,再根据正弦的定义即可得出答案【详解】解:
10、纸片ABCD是矩形,CD=AB,C=90,由翻折变换的性质得,CD=CD=4,C=C=90,故选:B【点睛】本题可以考查锐角三角函数的运用:在直角三角形中,锐角的正弦为对边比斜边6、D【分析】结合题意,根据乘方和绝对值的性质,得,从而得,根据特殊角度三角函数的性质,得,;根据等腰三角形和三角形内角和性质计算,即可得到答案【详解】解:,ABC一定是等腰直角三角形故选:D【点睛】本题考查了绝对值、三角函数、三角形内角和、等腰三角形的知识;解题的关键是熟练掌握绝对值、三角函数的性质,从而完成求解7、C【分析】先根据APPC,可求PCA=90-46=44,在RtPCA中,利用三角函数AP=米即可【详解
11、】解:APPC,PCA+A=90,A=46,PCA=90-46=44,在RtPCA中,tanPCA=,PC=50米,AP=米故选C【点睛】本题考查测量问题,掌握测量问题经常利用三角函数求边,熟悉锐角三角函数定义是解题关键8、C【分析】由图得点A到达点E时,面积最大,此时,由三角函数算出AB,由三角形面积公式即可求解【详解】由图可得:点A到达点E时,面积最大,此时,故选:C【点睛】本题考查二次函数图像问题以及解直角三角形,由题判断点A运动到哪里能使面积最大是解题的关键9、B【分析】直接利用锐角三角函数关系得出,进而得出答案【详解】由题意可得:,则AB=故选:B【点睛】此题主要考查了解直角三角形的
12、应用,正确记忆锐角三角函数关系是解题关键10、B【分析】过点O作,设圆的半径为r,根据垂径定理可得OBM与ODN是直角三角形,根据三角函数值进行求解即可得到结果【详解】如图,过点O作,设圆的半径为r,OBM与ODN是直角三角形,等边三角形ABC和正方形ADEF都内接于,,,故选B【点睛】本题主要考查了圆的垂径定理知识点应用,结合等边三角形和正方形的性质,利用三角函数求解是解题的关键二、填空题1、【解析】【分析】先根据勾股定理求出AC,再根据等积关系求出BD,再根据勾股定理求出AD以及CD,最后再求出角的正切值即可【详解】解:过点B作BDAC于点D,如图,由勾股定理得, 根据等积关系得, 由勾股
13、定理得, 故答案为:【点睛】本题考查解直角三角形,三角形的面积等知识,解题的关键是学会添加常用辅助线,构造直角三角形解决问题2、【解析】【分析】将线段绕点顺时针旋转得到线段,连接,作交的延长线于点,证明,可得,再分别求解,从而利用勾股定理可得答案.【详解】解:将线段绕点顺时针旋转得到线段,连接,作交的延长线于点是等边三角形,是等边三角形, , ,在中,故答案为【点睛】本题考查的是全等三角形的判定与性质,等边三角形的判定与性质,旋转的性质,勾股定理的应用,锐角三角函数的应用,作出适当的辅助线构建全等三角形与直角三角形是解本题的关键.3、【解析】【分析】如图,过作于 过作于 作于 证明四边形为矩形
14、,再求解 证明 设 则 再表示 利用列方程,再解方程可得答案.【详解】解:如图,过作于 过作于 作于 四边形为矩形, 设 则 由 同理: 解得: 故答案为:【点睛】本题考查的是等腰直角三角形的性质,矩形的判定与性质,等腰三角形的判定与性质,锐角三角函数的应用,熟练的运用“锐角三角函数建立方程”是解本题的关键.4、6【解析】【分析】证明ABPB,在RtPAC中,求出PC3千米,在RtPBC中,解直角三角形可求出PB的长,则可得出答案【详解】解:由题意知,PAB30,PBC60,APBPBCPAB603030,PABAPB,ABPB,在RtPAC中,AP6千米,PCPA3千米,在RtPBC中,si
15、nPBC,PB6千米AB6千米故答案为:6【点睛】本题考查了解直角三角形应用题,方向角:指正北或指正南方向线与目标方向线所成的小于90的角叫做方向角注意在描述方向角时,一般应先说北或南,再说偏西或偏东多少度,而不说成东偏北(南)多少度或西偏北(南)多少度.当方向角在45方向上时,又常常说成东南、东北、西南、西北方向5、 ; ;【解析】【分析】根据题意求得到的距离,进而根据正切的定义可得;如图2,过点作交的延长线于点,解直角三角形即可解决问题【详解】解:拉伸杆AD的端点A在点B正上方且距地面2.2dm,BD2dm,O1半径分别为0.6dm,竖直连接处CO11dm,设到的距离为,则dm如图1,连接
16、,过点作,中ADE始终保持角度不变GFDE,四边形是平行四边形装置运动后,如图2,过点作交的延长线于点,则设,则,解得故答案为:,【点睛】本题考查了垂径定理,解直角三角形的应用,两图中有一个角是相等的,找到这个角的并求得它的正切值为是解题的关键三、解答题1、【解析】【分析】直接利用特殊角的三角函数值代入,进而利用二次根式的乘法运算法则计算得出答案【详解】解:原式【点睛】本题主要考查了特殊角的三角函数值的混合运算,熟记特殊角的三角函数值是解题关键2、【解析】【分析】将式子中特殊角的三角函数值换掉,然后去绝对值,计算负指数幂,最后进行加减运算即可【详解】解:【点睛】题目主要考查特殊角的三角函数值的
17、运算及绝对值、负指数幂的运算,熟记特殊角的三角函数值是解题关键3、(1)汽车在这段限速路上超速(2)20米【解析】【分析】(1)根据解直角三角形的方法求BC的长,然后比较;(2)求两车在匀速行驶过程中的最近距离可以转化为求函数的最值问题,故可求解【详解】解:(1)在RtAOB中,OA100,BAO60,OBOAtanBAO100米RtAOC中,CAO45,OCOA100米BCBOOC100100米,18m/s60km/h16.7 m/s汽车在这段限速路上超速了(2)设大货车行驶了x米,两车的距离为y当x60米时,y有最小值20米答:两车在匀速行驶过程中的最近距离为20米【点睛】此题主要考查解直
18、角三角形的实际应用于二次函数的最值,解一般三角形的问题一般可以转化为解直角三角形的问题,解决的方法就是作高线4、(1)证明见解析;(2),【解析】【分析】(1)连接AO,由,四边形ABCD是平行四边形,即得推得为等边三角形,即可得BAO=BAC+CAO=90,即BA是O的切线(2)由(1)有A0=将阴影面积拆为相等的两部分,其中左侧部分为扇形ACO面积减去三角形ACO面积,由扇形面积公式,等边三角形面积公式计算后乘2即可【详解】(1)证明:连接OA四边形ABCD是平行四边形AD/BEADC=DCO又ACD=ADCACO=ACD +DCO=2ADC又2ADC=AO=AC又OC=AO为等边三角形A
19、CO=CAO=60,ACD =DCO=30又AB/CDBAC=ACD=30BAO=BAC+CAO=30+60=90BA是O的切线(2)由(1)可知BAO=90,BOA=60AO=连接AO,与CD交于点MAC=,OAC=60CM=AO=,AOC=60【点睛】本题是一道圆内的综合问题,考察了证明某线是切线、平行四边形性质、等弧的性质、解直角三角形、等边三角形性质、勾股定理、扇形面积公式等,需熟练掌握这些性质及定理,而作出正确的辅助线是解题的关键5、【解析】【分析】根据特殊三角函数值、零次幂、负指数幂及二次根式的运算可直接进行求解【详解】解:=【点睛】本题主要考查特殊三角函数值、零次幂、负指数幂及二次根式的运算,熟练掌握特殊三角函数值、零次幂、负指数幂及二次根式的运算是解题的关键