人教版八年级数学下册第十六章-二次根式专项训练试卷(含答案详解).docx

上传人:知****量 文档编号:28190494 上传时间:2022-07-26 格式:DOCX 页数:16 大小:224.83KB
返回 下载 相关 举报
人教版八年级数学下册第十六章-二次根式专项训练试卷(含答案详解).docx_第1页
第1页 / 共16页
人教版八年级数学下册第十六章-二次根式专项训练试卷(含答案详解).docx_第2页
第2页 / 共16页
点击查看更多>>
资源描述

《人教版八年级数学下册第十六章-二次根式专项训练试卷(含答案详解).docx》由会员分享,可在线阅读,更多相关《人教版八年级数学下册第十六章-二次根式专项训练试卷(含答案详解).docx(16页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。

1、人教版八年级数学下册第十六章-二次根式专项训练 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、下列计算正确的是( )ABCD2、下列各式是最简二次根式的是( )ABCD3、估计+2的值在()A1 和 2

2、之间B2 和 3 之间C3 和 4 之间D4 和 5 之间4、实数,在数轴上的位置如图所示,则( )ABCD5、下列计算正确的是()ABCD36、若实数x,y满足等式,则的值是( )ABCD7、计算的结果是( )AB3CD98、化简:()ABCD9、下列计算正确的是( )ABCD10、下列计算中正确的是()ABCD第卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、化简:_2、当x_时,在实数范围内有意义3、若等式:成立,则x的取值范围是_4、我们知道黄金比例是,利用这个比例,我们规定一种“黄金算法”即:aba+b,比如121+2若x(48)10,则x的值为_5、计算:_三

3、、解答题(5小题,每小题10分,共计50分)1、计算下列各式的值(1)146272(2)8-32+212(3)2123432-(8-312)(4)(3x-1)2=42、阅读下列内容:因为139,所以133,所以3的整数部分是1,小数部分是3-1试解决下列问题:(1)求11的整数部分和小数部分;(2)若已知8+13的小数部分是a,8-13的整数部分是b,求ab-3a+4b的值3、计算:(-4)2-14-3-0.125-|-6|4、先化简,再求值,其中x31,3x+3x-1(x+3x+1x-1)5、计算:(1)(12x2y38x3y2z)8x2y2(2)23-8+1212+1550-参考答案-一、

4、单选题1、D【解析】【分析】根据二次根式运算法则逐项判断即可【详解】解:A. ,不符合题意;B. ,不符合题意;C. ,不符合题意;D. ,符合题意;故选:D【点睛】本题考查了二次根式的运算,解题关键是熟练运用二次根式运算法则进行准确计算2、D【解析】【分析】最简二次根式满足:被开方数不含分母;被开方数中不含能开得尽方的因数或因式据此依次分析即可【详解】解:A、被开方数含有分母,不是最简二次根式,不符合题意;B、被开方数含有分母,不是最简二次根式,不符合题意;C、被开方数含有开方开得尽的因数,不是最简二次根式,不符合题意;D、是最简二次根式,符合题意;故选:D【点睛】此题考查了最简二次根式的定

5、义,解题的关键是掌握最简二次根式3、D【解析】【分析】原式第一项利用二次根式的乘法变形,估算得到结果,即可作出判断【详解】解:,23,4+25,+2的值在4 和 5 之间故选:D【点睛】此题考查了二次根式的乘法,估算无理数的大小,正确估算出23是解题的关键4、B【解析】【分析】先根据数轴上两点的位置确定和的正负,再根据二次根式的性质化简计算即可【详解】解:观察数轴可得,故选B【点睛】本题主要考查了结合数轴上点的位置化简二次根式,熟练掌握二次根式的性质是解题的关键5、B【解析】【分析】利用二次根式的加减法对A、B进行判断;根据二次根式的乘法法则对C进行判断;根据二次根式的除法法则对D进行判断【详

6、解】A、与不能合并,所以A选项的计算错误;B、原式,所以B选项的计算正确;C、原式224,所以C选项的计算错误;D、原式,所以D选项的计算错误故选:B【点睛】本题考查了二次根式的加、减、乘、除运算,掌握二次根式的相关运算法则是解答本题的关键6、C【解析】【分析】根据二次根式的非负性和偶次方的非负性求出x和y的值,再代入计算即可【详解】解:,且,y=2故选:C【点睛】本题考查代数式求值,二次根式有意义的条件,乘方运算的符号规律,综合应用这些知识点是解题关键7、A【解析】【分析】根据题意先进行二次根式的化简,然后合并同类二次根式即可得出答案【详解】解:.故选:A.【点睛】本题考查二次根式的加减法,

7、解答本题的关键是掌握二次根式的化简以及同类二次根式的合并8、C【解析】【分析】首先根据二次根式有意义的条件判断,再根据二次根式的性质进行化简即可【详解】解:,故选:C【点睛】本题主要考查了二次根式的性质与化简,正确化简二次根式是解题关键9、D【解析】【分析】根据合并同类二次根式的法则逐一判断即可【详解】解:A、与不是同类二次根式,不能合并,故此选项不符合题意;B、与不是同类二次根式,不能合并,故此选项不符合题意;C、与不是同类二次根式,不能合并,故此选项不符合题意;D、,计算正确,符合题意;故选D【点睛】本题主要考查了合并同类二次根式,熟知相关计算法则是解题的关键10、C【解析】【分析】根据二

8、次根式的性质判断即可;【详解】,故A错误;,故B错误;,故C正确;不能合并,故D错误;故选C【点睛】本题主要考查了二次根式的性质应用,准确计算是解题的关键二、填空题1、【分析】根据二次根式的性质化简即可【详解】故答案为:【点睛】本题考查了二次根式的化简,熟练掌握二次根式的性质是解题的关键2、【分析】由在实数范围内有意义,可列不等式再解不等式可得答案.【详解】解: 在实数范围内有意义, 解得: 故答案为:【点睛】本题考查的是二次根式有意义的条件,掌握“二次根式有意义,则被开方数为非负数”是解本题的关键.3、【分析】由成立,可得不等式组,再解不等式组可得答案.【详解】解: 成立, 解可得 解可得

9、x的取值范围是故答案为:【点睛】本题考查的是商的算术平方根的化简公式的理解,掌握“”是解题的关键.4、【分析】根据定义新运算,先计算出48,然后根据定义新运算,列出方程,即可求出x的值即可【详解】解:由题可知:4,x,即,故答案为:【点睛】此题考查的是定义新运算,二次根式混合运算,一元一次方程的解法,掌握定义新运算的公式和运算顺序是解决此题的关键5、【分析】先根据二次根式的性质化简,再合并,即可求解【详解】解:故答案为:【点睛】本题主要考查了二次根式的加减混合运算,熟练掌握二次根式的性质是解题的关键三、解答题1、(1)3142;(2)-2;(3)0;(4)x=1或x=-13【解析】【分析】(1

10、)根据二次根式的乘除计算法则求解即可;(2)先利用二次根式的性质化简,然后根据二次根式的加减计算法则求解即可;(3)先根据二次根式的性质化简,然后根据二次根式的混合计算法则求解即可;(4)根据求平方根的方法解方程即可【详解】(1)146272=146272=632=3142;(2)8-32+212=22-42+2=-2;(3)2123432-8-312=433432-22-322=332-22+322=22-22+322=0;(4)3x-12=4,3x-1=2或3x-1=-2,解得x=1或x=-13【点睛】本题主要考查了利用二次根式的性质化简,二次根式的乘除计算,二次根式的混合计算,二次根式的

11、加减计算,求平方根法解方程,熟知相关计算法则是解题的关键2、(1)11的整数部分是3,小数部分为11-3;(2)ab-3a+4b的值为13+13【解析】【分析】(1)估算无理数11的大小即可;(2)估算无理数13,8+13,8-13的大小,确定a、b的值,代入计算即可【详解】解:(1)91116,3114,11的整数部分是3,小数部分为11-3;(2)3134,118+1312,8+13的小数部分a=8+13-11=13-3,3134,-4-13-3,48-135,8-13的整数部分是b=4,ab-3a+4b=(13-3)4-3(13-3)+44=413-12-313+9+16=13+13,答

12、:ab-3a+4b的值为13+13【点睛】本题考查估算无理数的大小,理解算术平方根的定义是解决问题的前提,求出a、b的值是正确解答的关键3、-2【解析】【分析】直接利用二次根式的性质以及立方根的性质、绝对值的性质分别化简得出答案【详解】解:原式=4-12+0.5-6,=-2【点睛】本题主要考查了实数运算,解题的关键是正确化简各数4、3x+1,3【解析】【分析】原式括号中两项通分并利用同分母分式的加法法则计算,同时利用除法法则变形,约分得到最简结果,把x的值代入计算即可求出值【详解】解答:解:原式3(x+1)x-1x(x-1)+3x+1x-13(x+1)x-1x2+2x+1x-13(x+1)x-

13、1(x+1)2x-13(x+1)x-1x-1(x+1)23x+1,当x31时,原式33-1+13【点睛】本题考查了分式的化简求值和二次根式的运算,解题关键是熟练运用分式运算法则进行化简,代入数值后准确进行计算5、(1)32y-xz;(2)33-2【解析】【分析】(1)根据多项式除以单项式的计算法则求解即可;(2)先利用二次根式的性质化简,然后根据二次根式的加减计算法则求解即可【详解】解:(1)12x2y3-8x3y2z8x2y2 =32y-xz;(2)23-8+1212+1550=23-22+3+2=33-2【点睛】本题主要考查了多项式除以单项式,利用二次根式的性质化简,二次根式的加减计算,熟知相关计算法则是解题的关键

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 应用文书 > 策划方案

本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

工信部备案号:黑ICP备15003705号© 2020-2023 www.taowenge.com 淘文阁