《2022年最新强化训练沪教版(上海)七年级数学第二学期第十三章相交线-平行线专题测试练习题(无超纲).docx》由会员分享,可在线阅读,更多相关《2022年最新强化训练沪教版(上海)七年级数学第二学期第十三章相交线-平行线专题测试练习题(无超纲).docx(26页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、七年级数学第二学期第十三章相交线 平行线专题测试 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、下列各图中,1与2是对顶角的是()ABCD2、如果同一平面内有三条直线,那么它们交点个数是( )个A3个B1
2、或3个C1或2或3个D0或1或2或3个3、如图,下列条件中,不能判断的是( )A1=3B2=4C4+5=180D3=44、如图,射线AB的方向是北偏东70,射线AC的方向是南偏西30,则BAC的度数是( )A100B140C160D1055、下列关于画图的语句正确的是( )A画直线B画射线C已知A、B、C三点,过这三点画一条直线D过直线AB外一点画一直线与AB平行6、如图,矩形纸片ABCD沿EF折叠后,FEC30,则AGE的度数为( )A30B60C80D不能确定7、如图,能判定ABCD的条件是( )A2BB3AC1ADA28、如图,已知直线,相交于O,平分,则的度数是( )ABCD9、若1与
3、2是内错角,则它们之间的关系是 ( )A12B12C12D12或12或1210、如图,将一张长方形纸带沿EF折叠,点C、D的对应点分别为C、D若DEF,用含的式子可以将CFG表示为()A2B90+C180D1802第卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、如图,AD是EAC的平分线,ADBC,B40,则DAC的度数为_2、如图,ABCDEF,若ABC125,CEF105,则BCE的度数为 _3、如图,ABCD且被直线AE所截,180,则2的度数是 _4、小军在一张纸上画一条直线,再画这条直线的平行线,然后依次画前一条直线的平行线,当他画到第十条直线时,第十条直线与
4、第一条直线的位置关系是_5、两条射线或线段平行,是指_三、解答题(10小题,每小题5分,共计50分)1、已知ABCD,点是AB,CD之间的一点(1)如图1,试探索AEC,BAE,DCE之间的数量关系;以下是小明同学的探索过程,请你结合图形仔细阅读,并完成填空(理由或数学式):解:过点E作PEAB(过直线外一点有且只有一条直线与这条直线平行)ABCD(已知),PECD( ),BAE1,DCE2( ),BAE+DCE + (等式的性质)即AEC,BAE,DCE之间的数量关系是 (2)如图2,点F是AB,CD之间的一点,AF平分BAE,CF平分DCE若AEC74,求AFC的大小;若CGAF,垂足为点
5、G,CE平分DCG,AEC+AFC126,求BAE的大小2、如图,直线AB,CD相交于点O,OMAB于点O,ONCD于点O(1)试说明12;(2)若BOC42,求AOC的大小3、如图,已知A120,FEC120,12,试说明FDGEFD请补全证明过程,即在下列括号内填上结论或理由解:A120,FEC120(已知),A ( )AB ( )又12(已知),ABCD ( )EF ( )FDGEFD ( )4、如图,在ABC中,DEAC,DFAB(1)判断A与EDF之间的大小关系,并说明理由(2)求A+B+C的度数5、如图所示,点、分别在、上,、均与相交,求证:6、请把下列证明过程及理由补充完整(填在
6、横线上):7、在如图所示的方格纸中,每个小正方形的顶点称为格点,每个小正方形的边长为1,已知四边形ABCD的四个顶点在格点上,利用格点和直尺按下列要求画图:(1)过点C画AD的平行线CE;(2)过点B画CD的垂线,垂足为F8、任意画两条相交的直线,在形成的四个角中,两两相配共能组成几对角?各对角存在怎样的位置关系?根据这种位置关系将它们分类9、如图,ABDG,1+2180(1)试说明:ADEF;(2)若DG是ADC的平分线,2142,求B的度数10、如图,OBOD,OC平分AOD,BOC35,求AOD和AOB的大小-参考答案-一、单选题1、B【分析】根据对顶角的定义作出判断即可【详解】解:根据
7、对顶角的定义可知:只有B选项的是对顶角,其它都不是故选:B【点睛】本题考查对顶角的定义,解题关键是明确两条直线相交后所得的只有一个公共顶点且两边互为反向延长线,这样的两个角叫做对顶角2、D【分析】根据三条直线是否有平行线分类讨论即可【详解】解:当三条直线平行时,交点个数为0;当三条直线相交于1点时,交点个数为1;当三条直线中,有两条平行,另一条分别与他们相交时,交点个数为2;当三条直线互相不平行时,且交点不重合时,交点个数为3;所以,它们的交点个数有4种情形故选:D【点睛】本题考查多条直线交点问题,解题关键是根据三条直线中是否有平行线和是否交于一点进行分类讨论3、D【分析】根据平行线的判定定理
8、对各选项进行逐一判断即可【详解】解:、,内错角相等,故本选项错误,不符合题意;、,同位角相等,故本选项错误,不符合题意;、,同旁内角互补,故本选项错误,不符合题意;、,它们不是内错角或同位角,与的关系无法判定,故本选项正确,符合题意故选:D【点睛】本题考查的是平行线的判定,解题的关键是熟知同位角相等,两直线平行;内错角相等,两直线平行;同旁内角互补,两直线平行的知识4、B【分析】根据方位角的含义先求解 再利用角的和差关系可得答案.【详解】解:如图,标注字母, 射线AB的方向是北偏东70,射线AC的方向是南偏西30, 而 故选B【点睛】本题考查的是角的和差关系,垂直的定义,方位角的含义,掌握“角
9、的和差与方位角的含义”是解本题的关键.5、D【分析】直接利用直线、射线的定义分析得出答案【详解】解:A、画直线AB8cm,直线没有长度,故此选项错误;B、画射线OA8cm,射线没有长度,故此选项错误;C、已知A、B、C三点,过这三点画一条直线或2条、三条直线,故此选项错误;D、过直线AB外一点画一直线与AB平行,正确故选:D【点睛】此题主要考查了直线、射线的定义及画平行线,正确把握相关定义是解题关键6、B【分析】由翻折变换的性质求出GEF的度数,再利用平行线的性质可得出结论【详解】解:ADBC,FEC=30,AGE=GEC,由翻折变换的性质可知GEF=FEC=30,AGE=GEC=GEF+FE
10、C=30+30=60故选:B【点睛】本题考查了平行线的性质以及折叠的性质,根据平行线的性质找到相等(或互补)的角是关键7、D【分析】根据平行线的判定定理,找出正确选项即可.【详解】根据内错角相等,两直线平行,A2,ABCD,故选:D.【点睛】本题主要考查了平行线的判定,解答此类要判定两直线平行的题,可围绕截线找同位角、内错角和同旁内角,培养了学生“执果索因”的思维方式与能力8、C【分析】先根据角平分线的定义求得AOC的度数,再根据邻补角求得BOC的度数即可【详解】解:OA平分EOC,EOC100,AOCEOC50,BOC180AOC130故选:C【点睛】本题考查角平分线的有关计算,邻补角能正确
11、识图是解题关键9、D【分析】根据内错角角的定义和平行线的性质判断即可【详解】解:只有两直线平行时,内错角才可能相等,根据已知1与2是内错角可以得出1=2或12或12,三种情况都有可能,故选D【点睛】本题考查了内错角和平行线的性质,能理解内错角的定义是解此题的关键10、D【分析】由平行线的性质得,由折叠的性质得,计算即可得出答案【详解】四边形ABCD是矩形,长方形纸带沿EF折叠,故选:D【点睛】本题考查平行线的性质与折叠的性质,掌握平行线的性质以及折叠的性质是解题的关键二、填空题1、40【分析】根据平行线的性质可得EAD=B,根据角平分线的定义可得DAC=EAD,即可得答案【详解】ADBC,B4
12、0,EAD=B=40,AD是EAC的平分线,DAC=EAD=40,故答案为:40【点睛】本题考查平行线的性质及角平分线的定义,两直线平行,同位角相等;两直线平行,内错角相等;两直线平行,同旁内角互补;熟练掌握平行线的性质是解题关键2、50【分析】由ABCDEF,得到BCD=ABC=125,CEF+ECD=180,则ECD=180-CEF=75,由此即可得到答案【详解】解:ABCDEF,BCD=ABC=125,CEF+ECD=180,ECD=180-CEF=75,BCE=BCD-ECD=50,故答案为:50【点睛】本题主要考查了平行线的性质,熟知平行线的性质是解题的关键3、【分析】根据对顶角以及
13、平行线的性质,求解即可【详解】解:又故答案为【点睛】此题考查了对顶角以及平行线的性质,熟练掌握相关基本性质是解题的关键4、平行【分析】根据平行线的推论:平行于同一直线的两条直线互相平行,进行解答即可【详解】解:小军在一张纸上画一条直线,再画这条直线的平行线,然后依次画前一条直线的平行线,当他画到第十条直线时,第十条直线与第一条直线的位置关系是:平行,故答案为:平行【点睛】本题考查了平行线的推论,熟知平行于同一直线的两条直线互相平行是解本题的关键5、射线或线段所在的直线平行【分析】根据直线、线段、射线的关系以及平行线的知识进行解答【详解】解:两条射线或线段平行,是指:射线或线段所在的直线平行,故
14、答案为:射线或线段所在的直线平行【点睛】本题考查了直线、线段、射线以及平行线的问题,本题是对基础知识的考查,记忆时一定要注意公理或定义、性质成立的前提条件三、解答题1、(1)平行于同一条直线的两条直线平行,两直线平行,内错角相等,1,2,AECBAE+DCE;(2)37;52【分析】(1)结合图形利用平行线的性质填空即可;(2)过F作FGAB,由(1)得:AECBAE+DCE,根据ABCD,FGAB,CDFG,得出AFC=AFG+GFCBAF+DCF,根据AF平分BAE,CF平分DCE,可得BAFBAE,DCFDCE,根据角的和差AFCBAF+DCF=AEC即可;由得:AEC2AFC,可求AF
15、C42,AEC82,根据CGAF,求出GCF=90-AFC=48,根据角平分线计算得出GCF3DCF,求出DCF16即可【详解】解:(1)平行于同一条直线的两条直线平行,两直线平行,内错角相等,1,2,AECBAE+DCE,故答案为:平行于同一条直线的两条直线平行,两直线平行,内错角相等,1,2,AECBAE+DCE,(2)过F作FGAB,由(1)得:AECBAE+DCE,ABCD,FGAB,CDFG,BAF=AFG,DCF=GFC,AFC=AFG+GFCBAF+DCF,AF平分BAE,CF平分DCE,BAFBAE,DCFDCE,AFCBAF+DCF,BAE+DCE,=(BAE+DCE),AE
16、C,74,37;由得:AEC2AFC,AEC+AFC126,2AFC+AFC1263AFC126,AFC42,AEC84,CGAF,CGF90,GCF=90-AFC=48, CE平分DCG,GCEECD,CF平分DCE,DCE2DCF2ECF,GCF3DCF,DCF16,DCE32,BAEAECDCE52【点睛】本题考查平行线性质,角平分线有关的计算,垂直定义,角的和差倍分,简单一元一次方程,掌握平行线性质,角平分线有关的计算,垂直定义,角的和差倍分,简单一元一次方程是解题关键2、(1)见解析;(2)60【分析】(1)利用同角的余角相等解答即可得出结论;(2)利用(1)的结论,等量代换可得BO
17、C41,利用BOM9031,求得1的度数,则AOC901【详解】解:(1)OMAB,ONCD,AOMCON=90,AOC+190,AOC+290,12(2)OMAB,BOM9012,BOC42,BOC41BOMBOC141131,即3190,130AOCAOM1903060【点睛】本题考查了对顶角、垂线性质、余角等基本几何知识,属于基础题熟练掌握基本几何公理、基本几何概念是关键3、FEC;等量代换;EF;同位角相等,两直线平行;内错角相等,两直线平行;CD;平行于同一条直线的两直线互相平行;两直线平行,内错角相等【分析】利用平行线的判定,由已知得ABEF、ABCD,可推出EFCD,利用平行线的
18、性质得结论【详解】解:A=120,FEC=120(已知),A=FEC(等量代换),ABEF(同位角相等,两直线平行),又1=2(已知),ABCD(内错角相等,两直线平行),EFCD(平行于同一条直线的两直线互相平行),FDG=EFD(两直线平行,内错角相等),故答案为:FEC;等量代换;EF;同位角相等,两直线平行;内错角相等,两直线平行;CD;平行于同一条直线的两直线互相平行;两直线平行,内错角相等【点睛】本题考查了平行线的性质和判定,学会分析,正确的利用平行线的性质和判定是解决本题的关键4、(1)两角相等,见解析;(2)180【分析】(1)根据平行线的性质得到A=BED,EDF=BED,即
19、可得到结论;(2)根据平行线的性质得到C=EDB,B=FDC,利用平角的定义即可求解;【详解】(1)两角相等,理由如下:DEAC,A=BED(两直线平行,同位角相等).DFAB,EDF=BED(两直线平行,内错角相等),A=EDF(等量代换).(2)DEAC,C=EDB(两直线平行,同位角相等).DFAB,B=FDC(两直线平行,同位角相等).EDB+EDF+FDC=180,A+B+C=180(等量代换).【点睛】本题考查了平行线的性质,熟练掌握平行线的性质是解题的关键5、证明见解析【分析】由,证明,再证,最后根据对顶角相等,可得答案【详解】证明:,ABD=D,又,ABD=C,【点睛】本题主要
20、考查了平行线的性质与判定,对顶角的性质,解题的关键在于能够熟练掌握相关知识进行求解6、CAD;两直线平行,内错角相等;CAD;等量代换;等式的性质;CAD;等量代换;同位角相等,两直线平行【分析】根据ADBC,可得3CAD,从而得到4CAD,再由12,可得BAFCAD从而得到4BAF即可求证【详解】证明:ADBC(已知),3CAD(两直线平行,内错角相等)34(已知),4CAD(等量代换)12(已知),1+CAF2+CAF(等式的性质)即BAFCAD4BAF(等量代换)ABCD(同位角相等,两直线平行)【点睛】本题主要考查了平行线的性质和判定,熟练掌握平行线的性质和判定定理是解题的关键7、(1
21、)见解析;(2)见解析【分析】(1)根据要求作出图形即可(2)根据要求作出图形即可【详解】解:(1)根据题意得:AD是长为4,宽为3的长方形的对角线,所以在点C右上方长为4,宽为3的长方形的对角线所在的直线与AD平行,如图,直线CE即为所求作(2)根据题意得:CD是长为6,宽为3的长方形的对角线,所以在点B右下方长为6,宽为3的长方形的对角线所在的直线与CD垂直,如图,直线BF即为所求作【点睛】本题主要考查了画平行线和垂线,熟练掌握平行线和垂线的画法是解题的关键8、共组成6对角,位置关系有两种:有公共顶点,一边重合,另一边互为反向延长线;有公共顶点,角的两边互为反向延长线,具体分类见解析【分析
22、】根据题意画出图形,然后结合题意可进行求解【详解】解:如图,由图可知两条相交的直线,两两相配共组成6对角,位置关系有两种:有公共顶点,一边重合,另一边互为反向延长线;有公共顶点,角的两边互为反向延长线,这6对角中有:4对邻补角(即为AOD与AOC,AOD与BOD,BOD与BOC,BOC与AOC),2对对顶角(即为AOD与BOC,BOD与AOC)【点睛】本题主要考查对顶角及邻补角的概念,熟练掌握对顶角及邻补角的概念是解题的关键9、(1)见解析;(2)B38【分析】(1)由ABDG,得到BAD1,再由1+2180,得到BAD+2180,由此即可证明;(2)先求出138,由DG是ADC的平分线,得到
23、CDG138,再由ABDG,即可得到BCDG38【详解】(1)ABDG,BAD1,1+2180,BAD+2180.ADEF . (2)1+2180且2142,138,DG是ADC的平分线,CDG138,ABDG,BCDG38【点睛】本题主要考查了平行线的性质与判定,角平分线的定义,熟知平行线的性质与判定条件是解题的关键10、AOD=110,AOB=20【分析】根据OBOD,先可求出COD,再根据角平分线的性质求出AOD,利用角度的关系即可求出AOB【详解】解:OBODBOD=90BOC35,COD=90-BOC55OC平分AOD,AOD=2COD=110AOB=AOD-BOD=110-90=20【点睛】此题主要考查角度的求解,解题的关键是熟知角平分线的性质、垂直的定义