《2021-2022学年最新沪教版七年级数学第二学期第十五章平面直角坐标系章节测试练习题(含详解).docx》由会员分享,可在线阅读,更多相关《2021-2022学年最新沪教版七年级数学第二学期第十五章平面直角坐标系章节测试练习题(含详解).docx(26页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、七年级数学第二学期第十五章平面直角坐标系章节测试 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、在下列说法中,能确定位置的是( )A禅城区季华五路B中山公园与火车站之间C距离祖庙300米D金马影剧院大厅5
2、排21号2、如果点P(m,n)是第三象限内的点,则点Q(-n,0)在( )Ax轴正半轴上Bx轴负半轴上Cy轴正半轴上Dy轴负半轴上3、在平面直角坐标系中,点(2,5)关于x轴对称的点的坐标是()A(2,5)B(2,5)C(2,5)D(2,5)4、在平面直角坐标系中,已知点P(5,5),则点P在( )A第一象限B第二象限C第三象限D第四象限5、如图为某停车场的平面示意图,若“奥迪”的坐标是(-2,-1),“奔驰”的坐标是(1,-1),则“东风标致”的坐标是( )A(-3,2)B(3,2)C(-3,-2)D(3,-2)6、在平面直角坐标系中,点,关于轴对称点的坐标是( )ABCD7、点P在第二象限
3、内,P到x轴的距离是4,到y轴的距离是3,那么点P的坐标为( )A(-4,3)B(4,-3)C(-3,4)D(3,-4)8、一只跳蚤在第一象限及x轴、y轴上跳动,在第一秒钟,它从原点跳动到(0,1),然后接着按图中箭头所示方向跳动即(0,0)(0,1)(1,1) (1,0) ,且每秒跳动一个单位,那么第25秒时跳蚤所在位置的坐标是( )A(4,0)B(5,0)C(0,5)D(5,5)9、直角坐标系中,点A(-3,4)与点B(3,-4)关于( )A原点中心对称B轴轴对称C轴轴对称D以上都不对10、已知点A(x,5)在第二象限,则点B(x,5)在( )A第一象限B第二象限C第三象限D第四象限第卷(
4、非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、已知,点A(a+1,2)、B(3,b-1)两点关于x轴对称,则C(a,b)的坐标是_2、如图,在平面直角坐标系中,四边形ABOC是正方形,点A的坐标为(1,1),是以点B为圆心,BA为半径的圆弧;是以点O为圆心,OA1为半径的圆弧,是以点C为圆心,CA2为半径的圆弧,是以点A为圆心,AA3为半径的圆弧,继续以点B、O、C、A为圆心按上述作法得到的曲线AA1A2A3A4A5称为正方形的“渐开线”,那么点A2021的坐标是_3、如图,边长为1的正六边形放置于平面直角坐标系中,边在轴正半轴上,顶点在轴正半轴上,将正六边形绕坐标原点顺时
5、针旋转,每次旋转,那么经过第2022次旋转后,顶点的坐标为_4、若点P(m1,5)与点Q(3,n)关于原点成中心对称,则mn的值是_5、平面直角坐标系中,点P(3,4)到x轴的距离是_三、解答题(10小题,每小题5分,共计50分)1、如图,已知ABC各顶点的坐标分别为A(-3,2),B(-4,-3),C(-1,-1) (1)请在图中画出ABC关于y轴对称的A1B1C1,(2)并写出A1B1C1的各点坐标2、马来西亚航空公司MH370航班自失联以来,我国派出大量救援力量,竭尽全力展开海上搜寻行动某天中国海巡01号继续在南印度洋海域搜索,发现了一个位于东经101度,南纬25度的可疑物体如果约定“经
6、度在前,纬度在后”,那么我们可以用有序数对(101,25)表示该可疑物体的位置,仿照此表示方法,东经116度,南纬38度如何用有序数对表示?3、如图,在平面直角坐标系中,A(1,4)、B(2,1)、C(3,2)(1)作ABC关于x轴对称图形ABC;(2)求CAA的面积4、在如图所示的平面直角坐标系中,A点坐标为(1)画出关于y轴对称的;(2)求的面积5、如图,三角形的项点坐标分别为,(1)画出三角形关于点的中心对称的,并写出点的坐标;(2)画出三角形绕点顺时针旋转90后的,并写出点的坐标6、如图在平面直角坐标系中,ABC各顶点的坐标分别为: A(4,0),B(1,4),C(3,1)(1)在图中
7、作ABC使ABC和ABC关于x轴对称;(2)求ABC的面积7、如图,在平面直角坐标系中,已知的三个顶点都在网格的格点上(1)在图中作出关于轴对称的,并写出点的对应点的坐标;(2)在图中作出关于轴对称的,并写出点的对应点的坐标8、多多和爸爸、妈妈周末到白银市金鱼公园动物园游玩,回到家后,她利用平面直角坐标系画出了白银市金鱼公园动物园的景区地图,如图所示可是她忘记了在图中标出原点、x轴和y轴,只知道东北虎的坐标为请你帮她画出平面直角坐标系,并写出其他各景点的坐标9、如图,在平面直角坐标中,、(1)在图中作出关于轴的对称图形;(2)直接写出点、的坐标:_,_,_(3)求的面积10、如图,在正方形网格
8、中,每个小正方形的边长均为1,ABC的三个顶点都在格点上,结合所给的平面直角坐标系,解答下列问题:(1)请画出ABC关于x轴成轴对称的A1B1C1,并写出点A1的坐标;(2)请画出ABC关于点O成中心对称的A2B2C2,并写出点A2的坐标;(3)A1B1C1与A2B2C2关于某直线成轴对称吗?若是,请写出对称轴;若不是,请说明理由-参考答案-一、单选题1、D【分析】根据确定位置的方法逐一判处即可【详解】解:A、禅城区季华五路,确定了路线,没能确定准确位置,故不符合题意;B、中山公园与火车站之间,没能确定准确位置,故不符合题意;C、距离祖庙300米,有距离但没有方向,故不符合题意;D、金马影剧院
9、大厅5排21号,确定了位置,故符合题意故选:D【点睛】本题考查了位置的确定,熟练掌握常见的确定位置的方法:用有序数对确定物体位置;用方向和距离来确定物体的位置2、A【分析】根据平面直角坐标系中象限的坐标特征可直接进行求解【详解】解:点P(m,n)是第三象限内的点,n0,-n0,点Q(-n,0)在x轴正半轴上;故选A【点睛】本题主要考查平面直角坐标系中象限的坐标,熟练掌握在第一象限的点坐标为(+,+);在第二象限的点坐标为(-,+),在第三象限的点坐标为(-,-),在第四象限的点坐标为(+,-)是解题的关键3、A【分析】根据平面直角坐标系中任意一点P(x,y),关于x轴的对称点的坐标是(x,y)
10、,据此即可求得点A(2,5)关于x轴对称的点的坐标【详解】解:点(2,5)关于x轴对称,对称的点的坐标是(2,5)故选:A【点睛】本题主要考查了关于x轴对称点的性质,点P(x,y)关于x轴的对称点P的坐标是(x,-y)4、D【分析】根据各象限内点的坐标特征解答即可【详解】解:点P(5,-5)的横坐标大于0,纵坐标小于0,所以点P所在的象限是第四象限故选:D【点睛】本题考查了各象限内点的坐标的符号特征,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(-,+);第三象限(-,-);第四象限(+,-)5、D【分析】由题意,先建立平面直角坐标系,确定原点
11、的位置,即可得到“东风标致”的坐标【详解】解:“奥迪”的坐标是(2,1),“奔驰”的坐标是(1,1),建立平面直角坐标系,如图所示:“东风标致”的坐标是(3,2);故选:D【点睛】本题考查了坐标确定位置:平面坐标系中的点与有序实数对一一对应;记住平面内特殊位置的点的坐标特征6、A【分析】平面直角坐标系中任意一点P(x,y),关于x轴的对称点的坐标是(x,-y),即关于横轴的对称点,横坐标不变,纵坐标变成相反数,这样就可以求出对称点的坐标【详解】解:点A(3,-4)关于x轴的对称点的坐标是(3,4),故选:A【点睛】本题主要考查了平面直角坐标系关于坐标轴成轴对称的两点的坐标之间的关系,是需要识记
12、的内容7、C【分析】根据第二象限内点的横坐标是负数,纵坐标是正数,点到x轴的距离等于纵坐标的长度,到y轴的距离等于横坐标的长度解答【详解】解:点P在第二象限内,点P到x轴的距离是4,到y轴的距离是3,点P的横坐标是-3,纵坐标是4,点P的坐标为(-3,4)故选C【点睛】本题考查了点的坐标,熟记点到x轴的距离等于纵坐标的长度,到y轴的距离等于横坐标的长度是解题的关键8、C【分析】根据题意,找出其运动规律,质点每秒移动一个单位,质点到达(1,0)时,共用3秒;质点到达(2,0)时,共用4秒;质点到达(0,2)时,共用4+4=8秒;质点到达(0,3)时,共用9秒;质点到达(3,0)时,共用9+6=1
13、5秒;以此类推, 即可得出答案【详解】解:由题意可知,质点每秒移动一个单位质点到达(1,0)时,共用3秒;质点到达(2,0)时,共用4秒;质点到达(0,2)时,共用4+4=8秒;质点到达(0,3)时,共用9秒;质点到达(3,0)时,共用9+6=15秒;以此类推,质点到达(4,0)时,共用16秒;质点到达(0,4)时,共用16+8=24秒;质点到达(0,5)时,共用25秒;故选:C【点睛】本题考查图形变化与运动规律,根据所给质点运动的特点能够正确确定点运动的顺序,确定运动的距离,从而可以得到到达每个点所用的时间找出规律是解题的关键9、A【分析】观察点A与点B的坐标,依据关于原点中心对称的点,横坐
14、标与纵坐标都互为相反数可得答案【详解】根据题意,易得点(-3,4)与(3,-4)的横、纵坐标互为相反数,则这两点关于原点中心对称故选A【点睛】本题考查在平面直角坐标系中,关于原点中心对称的两点的坐标之间的关系掌握关于原点对称的点,横坐标与纵坐标都互为相反数是解答本题的关键10、D【分析】由题意直接根据各象限内点坐标特征进行分析即可得出答案【详解】点A(x,5)在第二象限,x0,x0,点B(x,5)在四象限故选:D【点睛】本题考查各象限内点的坐标的符号特征,记住各象限内点的坐标的符号是解题的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(-,+);第三象限(-,-);第四象限(+,
15、-)二、填空题1、(2,-1)【分析】根据关于x轴的对称点的坐标特点:横坐标不变,纵坐标互为相反数,可得a、b的值,进而可得答案【详解】解:点A(a+1,2)、B(3,b-1)两点关于x轴对称,a+1=3,b-1=-2,解得:a=2,b=-1,C的坐标是(2,-1),故答案为:(2,-1)【点睛】本题主要考查了关于x轴对称的点的坐标,关键是掌握点的坐标变化规律2、(2021,0)【分析】将四分之一圆弧对应的A点坐标看作顺时针旋转90,再根据A、A1、A2、A3、A4的坐标找到规律即可【详解】A点坐标为(1,1),且A1为A点绕B点顺时针旋转90所得A1点坐标为(2,0)又A2为A1点绕O点顺时
16、针旋转90所得A2点坐标为(0,-2)又A3为A2点绕C点顺时针旋转90所得A3点坐标为(-3,1)又A4为A3点绕A点顺时针旋转90所得A4点坐标为(1,5)由此可得出规律:An为绕B、O、C、A四点作为圆心依次循环顺时针旋转90,且半径为1、2、3、n,每次增加120214=5051故A2021为以点B为圆心,半径为2021的A2020点顺时针旋转90所得故A2021点坐标为(2021,0)故答案为:(2021,0)【点睛】本题考查了点坐标规律探索,通过点的变化探索出旋转的规律是解题的关键3、【分析】连接AD、BD,由勾股定理可得BD,求出OFA=30,得到OA的值,进而求得OB的值,得到
17、点D的坐标,由题意可得6次一个循环,即可求出经过第2022次旋转后,顶点的坐标【详解】解:如图,连接AD,BD,在正六边形ABCDEF中,在中,将正六边形ABCDEF绕坐标原点O顺时针旋转,每次旋转60,6次一个循环,经过第2022次旋转后,顶点D的坐标与第一象限中D点的坐标相同,故答案为:【点睛】此题考查了正六边形的性质,平面直角坐标系中图形规律问题,解题的关键是正确分析出点D坐标的规律4、9【分析】根据关于原点对称点的坐标特征求出、的值,再代入计算即可【详解】解:点与点关于原点成中心对称,即,故答案为:9【点睛】本题考查关于原点对称的点坐标特征,解题的关键是掌握关于原点对称的点坐标特征,即
18、纵坐标互为相反数,横坐标也互为相反数5、4【分析】根据点的坐标表示方法得到点P(3,4)到x轴的距离是纵坐标的绝对值即|4|,然后去绝对值即可【详解】解:点P(3,-4)到x轴的距离为|4|=4故答案为:4【点睛】此题主要考查了点到坐标上的距离,正确掌握点的坐标性质是解题关键三、解答题1、(1)见解析;(2)A1(3,2),B1(4,-3),C1(1,-1)【分析】(1)分别作出三个顶点关于y轴的对称点,再首尾顺次连接即可;(2)根据所作图形可得答案【详解】解:(1)如图所示,A1B1C1即为所求作(2)由图可知,A1(3,2),B1(4,-3),C1(1,-1)【点睛】本题主要考查作图-轴对
19、称变换,解题的关键是掌握轴对称变换的定义和性质,并据此得出变换后的对应点注意:关于x轴对称的点,横坐标相同,纵坐标互为相反数2、东经度,南纬度可以表示为【分析】根据“经度在前,纬度在后”的顺序,可以将东经度,南纬度用有序数对表示【详解】解:由题意可知东经度,南纬度,可用有序数对表示故东经度,南纬度表示为【点睛】本题考察了用有序数对表示位置解题的关键在于读懂题意中给定的规则3、(1)见解析;(2)16【分析】(1)分别作出三个顶点关于x轴的对称点,再首尾顺次连接即可;(2)直接根据三角形的面积公式求解即可【详解】解:(1)如图所示,ABC即为所求(2)CAA的面积为8416【点睛】本题主要考查作
20、图轴对称变换,解题的关键是掌握轴对称变换的定义和性质4、(1)见解析;(2)【分析】(1)分别作A、B、C三点关于y轴的对称点A1、B1、C1,顺次连接A1、B1、C1即可得答案;(2)用ABC所在矩形面积减去三个小三角形面积即可得答案【详解】(1)分别作A、B、C三点关于y轴的对称点A1、B1、C1,A1B1C1即为所求;(2)SABC=33=【点睛】本题考查了作轴对称图形和运用拼凑法求不规则三角形的面积,其中掌握拼凑法求不规则图形的面积是解答本题的关键5、(1)图见解析,;(2)图见解析,【分析】(1)写出,关于原点对称的点,连接即可;(2)连接OC,OB,根据旋转的90可得,即可;【详解
21、】(1),关于原点对称的点,作图如下;(2)连接OC,OB,根据旋转的90可得,其中点C2的坐标是(3,-1),作图如下:【点睛】本题主要考查了平面直角坐标系中图形的旋转,作关于原点对称的图形,准确分析作图是解题的关键6、(1)见解析;(2)11.5【分析】(1)直接利用关于x轴对称点的性质,进而得出答案;(2)利用ABC所在矩形面积减去周围三角形面积进而得出答案【详解】解:(1)如图所示(2)【点睛】此题主要考查了轴对称变换以及三角形面积求法,正确得出对应点位置是解题关键7、(1)为所求,图形见详解,点B1(-5,-1);(2)为所求,图形见详解,点B2(5,1)【分析】(1)根据关于轴对称
22、的,求出A1(-6,-6),B1(-5,-1),C1(-1,-6),然后在平面直角坐标系中描点,顺次连接A1B1, B1C1,C1A1即可;(2)根据关于轴对称的,求出A2(6,6),点B2(5,1),点C2(1,6),然后在平面直角坐标系中描点,顺次连接A2B2, B2C2,C2A2即可【详解】解:(1)根据点在平面直角坐标系中的位置,ABC三点坐标分别为A(-6,6),B(-5,1),C(-1,6),关于轴对称的,关于x轴对称点的特征是横坐标不变,纵坐标互为相反数,中点A1(-6,-6),点B1(-5,-1),点C1(-1,-6),在平面直角坐标系中描点A1(-6,-6),B1(-5,-1
23、),C1(-1,-6),顺次连接A1B1, B1C1,C1A1,则为所求,点B1(-5,-1);(2)关于轴对称的,点的坐标特征是横坐标互为相反数,纵坐标不变,ABC三点坐标分别为A(-6,6),B(-5,1),C(-1,6),中点A2(6,6),点B2(5,1),点C2(1,6),在平面直角坐标系中描点A2(6,6),B2(5,1),C2(1,6),顺次连接A2B2, B2C2,C2A2,则为所求,点B2(5,1)【点睛】本题考查在平面直角坐标系中画称轴对称的图形,掌握画图方法,先求坐标,描点,顺次连接是解题关键8、两栖动物的坐标为(4,1),飞禽的坐标为(3,4),非洲狮的坐标为(,5)【
24、分析】先利用东北虎的坐标找到坐标原点,然后以坐标原点建系,进而找出其他景点的坐标【详解】解:由东北虎的坐标可知:坐标原点即为南门,以南门为坐标原点建系,如下图所示:故:两栖动物的坐标为(4,1),飞禽的坐标为(3,4),非洲狮的坐标为(,5)【点睛】本题主要是考查了写出直角坐标系中的点的坐标,解题的关键通过已知条件,找到坐标原点,进而才能求出其他点的坐标9、(1)见解析;(2),;(3)【分析】(1)根据轴对称图形的特点画出图形即可;(2)根据所画出的图形写出点的坐标;(3)首先把三角形放在一个大正方形内,再用大正方形的面积减去四周三角形的面积即可【详解】解:(1)如图所示:(2)根据平面直角
25、坐标系可得:,;故答案为:,(3)ABC的面积=35-33-21-52=.【点睛】本题主要考查了轴对称图形,以及点的坐标,三角形的面积,关键是掌握在计算不规则图形的面积时,可以利用可以用补图的方法10、(1)画图见解析,点A1的坐标;(-4,3);(2)画图见解析,点A2的坐标(4,3);(3)A1B1C1与A2B2C2关于y轴成轴对称,对称轴为y轴【分析】(1)分别作出A,B,C的对应点A1,B1,C1即可;(2)分别作出A,B,C的对应点A2,B2,C2即可;(3)根据轴对称的定义判断即可【详解】解:(1)如图,A1B1C1即为所求,点A的对应点A1的坐标;(-4,3);(2)如图,A2B2C2即为所求,点A2的坐标(4,3);(3)A1B1C1与A2B2C2关于y轴成轴对称,对称轴为y轴【点睛】本题考查作图-旋转变换,轴对称变换,中心对称等知识,解题的关键是理解题意,灵活运用所学知识解决问题注意:(1)关于x轴对称的点,横坐标相同,纵坐标互为相反数;(2)关于y轴对称的点,纵坐标相同,横坐标互为相反数;(3)关于原点对称的点,横坐标与纵坐标都互为相反数