《2022年沪教版七年级数学第二学期第十五章平面直角坐标系章节练习练习题(含详解).docx》由会员分享,可在线阅读,更多相关《2022年沪教版七年级数学第二学期第十五章平面直角坐标系章节练习练习题(含详解).docx(30页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、七年级数学第二学期第十五章平面直角坐标系章节练习 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、在平面直角坐标系中,点P(2,3)在()A第一象限B第二象限C第三象限D第四象限2、点P在第二象限内,P点到
2、x、y轴的距离分别是4、3,则点P的坐标为()A(4,3)B(3,4)C(3,4)D(3,4)3、在平面直角坐标系中,点A(0,3),B(2,1),经过点A的直线lx轴,C是直线l上的一个动点,当线段BC的长度最短时,点C的坐标为()A(0,1)B(2,0)C(2,1)D(2,3)4、若点P(2,b)在第四象限内,则点Q(b,2)所在象限是( )A第一象限B第二象限C第三象限D第四象限5、在平面直角坐标系中,已知点P(5,5),则点P在( )A第一象限B第二象限C第三象限D第四象限6、在ABC中,ABAC,点B,点C在直角坐标系中的坐标分别是(2,0),(2,0),则点A的坐标可能是( )A(
3、0,2)B(0,0)C(2,2)D(2,2)7、点P(2,b)与点Q(a,3)关于x轴对称,则ab的值为( )A5B5C1D18、点在第四象限,则点在第几象限()A第一象限B第二象限C第三象限D第四象限9、在平面直角坐标系中,点P(2,3)在( )A第一象限B第二象限C第三象限D第四象限10、若在第一象限的ABC关于某条直线对称后的DEF在第四象限,则这条直线可以是()A直线x1Bx轴Cy轴D直线x第卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、在平面直角坐标系中,点在轴上,则点的坐标为_2、已知点M(x,3)与点N(2,y)关于x轴对称,则xy_3、若点(1,m)与点
4、(n,2)关于y轴对称,则的值为_4、点(2,-3)关于原点的对称点的坐标为_5、已知点与点关于原点对称,则a-b的值为_三、解答题(10小题,每小题5分,共计50分)1、在平面直角坐标系中描出以下各点:A(3,2)、B(-1,2)、C(-2,-1)、D(4,-1)顺次连接A、B、C、D得到四边形ABCD;2、在如图所示的正方形网格中,每个小正方形的边长都是1,ABC的顶点都在正方形网格的格点(网格线的交点)上(1)请在如图所示的网格平面内作出平面直角坐标系,使点A坐标为(1 ,3),点B坐标为(2 ,1);(2)请画出ABC关于y轴对称的图形A1B1C1,并写出点B1的坐标为 ;(3)P为y
5、轴上一点,当PB+PC的值最小时,P点的坐标为 3、如图,的顶点坐标分别为画出绕点顺时针旋转,得到并直接写出的面积4、如图所示,在平面直角坐标系中,已知,(1)在平面直角坐标系中画出,并求出的面积;(2)在(1)的条件下,把先关于y轴对称得到,再向下平移3个单位得到,则中的坐标分别为( ),( ),( );(直接写出坐标)(3)已知为轴上一点,若的面积为4,求点的坐标5、如图,在所给网格图(每小格边长均为1的正方形)中完成下列各题:(1)ABC的面积为 ;(2)画出格点ABC(顶点均在格点上)关于x轴对称的A1B1C1;(3)在y轴上画出点Q,使QAQC最小(保留画的痕迹)6、如图1所示,已知
6、点,有以点为顶点的直角的两边分别与轴、轴相交于点(1)试说明;(2)若点坐标为,点坐标为,请直接写出与之间的数量关系;(3)如图2所示,过点作线段,交轴正半轴于点,交轴负半轴于点,使得点为中点,且,绕着顶点旋转直角,使得一边交轴正半轴于点,另一边交轴正半轴于点,此时,和是否还相等,请说明理由;(4)在(3)条件下,请直接写出的值7、如图,ABCDx轴,且ABCD3,A点坐标为(1,1),C点坐标为(1,1),请写出点B,点D的坐标8、如图,在平面直角坐标系中,ABC的顶点坐标为A(1,1),B(3,2),C(2,4)(1)在图中作出ABC向右平移4个单位,再向下平移5个单位得到的A1B1C1;
7、(2)在图中作出A1B1C1关于y轴对称的A2B2C2;(3)经过上述平移变换和轴对称变换后,ABC内部的任意一点P(a,b)在A2B2C2内部的对应点P2的坐标为 9、如图,ABC顶点的坐标分别为A(1,1),B(4,1),C(3,4)将ABC绕点A逆时针旋转90后,得到AB1C1在所给的直角坐标系中画出旋转后的AB1C1,并直接写出点B1、C1的坐标:B1( , );C1( , )10、如图,在平面直角坐标系中,点B的坐标是,点C的坐标为,CB交x轴负半轴于点A,过点B作射线,作射线CD交BM于点D,且(1)求证:点A为线段BC的中点(2)求点D的坐标-参考答案-一、单选题1、B【分析】根
8、据点横纵坐标的正负分析得到答案【详解】解:点P(2,3)在第二象限,故选:B【点睛】此题考查了平面直角坐标系中各象限内点的坐标特点,熟记各象限内横纵坐标的正负是解题的关键2、C【分析】点P到x、y轴的距离分别是4、3,表明点P的纵坐标、横坐标的绝对值分别为4与3,再由点P在第二象限即可确定点P的坐标【详解】P点到x、y轴的距离分别是4、3,点P的纵坐标绝对值为4、横坐标的绝对值为3,点P在第二象限内,点P的坐标为(3,4),故选:C【点睛】本题考查了平面直角坐标系中点所在象限的特点,点到的坐标轴的距离,确定点的坐标,掌握这些知识是关键要注意:点到x、y轴的距离是此点的纵坐标、横坐标的绝对值,而
9、非横坐标、纵坐标的绝对值3、D【分析】根据垂线段最短可知BCl,即BCx轴,由已知即可求解【详解】解:点A(0,3),经过点A的直线lx轴,C是直线l上的一个动点,点C的纵坐标是3,根据垂线段最短可知,当BCl时,线段BC的长度最短,此时, BCx轴,B(2,1),点C的横坐标是2,点C坐标为(2,3),故选:D【点睛】本题考查坐标与图形、垂线段最短,熟知图形与坐标的关系,掌握垂线段最短是解答的关键4、C【分析】根据点P(2,b)在第四象限内,确定的符号,即可求解【详解】解:点P(2,b)在第四象限内,所以,点Q(b,2)所在象限是第三象限,故选:C【点睛】本题主要考查了平面直角坐标系中各象限
10、的点的坐标的符号特点,解决本题的关键是要熟练掌握点在各象限的符号特征5、D【分析】根据各象限内点的坐标特征解答即可【详解】解:点P(5,-5)的横坐标大于0,纵坐标小于0,所以点P所在的象限是第四象限故选:D【点睛】本题考查了各象限内点的坐标的符号特征,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(-,+);第三象限(-,-);第四象限(+,-)6、A【分析】由题意可知BOCO,又ABAC,得点A在y轴上,即可求解【详解】解:由题意可知BOCO,又ABAC,AOBC,点A在y轴上,选项A符合题意,B选项三点共线,不能构成三角形,不符合题意;选项
11、C、D都不在y轴上,不符合题意;故选:A【点睛】本题考查了平面直角坐标系点的特征,解题关键是分析出点A的位置7、B【分析】根据关于x轴对称的两点的坐标特征:横坐标相同,纵坐标互为相反数,即可求得a与b的值,从而求得a+b的值【详解】点P(2,b)与点Q(a,3)关于x轴对称a=2,b=3a+b=2+(3)=5故选:B【点睛】本题考查了关于x轴对称的两点的坐标特征,掌握这个特征是关键8、C【分析】根据点A(x,y)在第四象限,判断x,y的范围,即可求出B点所在象限【详解】点A(x,y)在第四象限,x0,y0,x0,y20,故点B(x,y2)在第三象限故选:C【点睛】本题考查了各象限内点的坐标的符
12、号特征,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(-,+);第三象限(-,-);第四象限(+,-)9、C【分析】根据第三象限内点的坐标横纵坐标都为负的直接可以判断【详解】解:在平面直角坐标系中,点P(2,3)在第三象限故选C【点睛】本题考查了平面直角坐标系中各象限内的点的坐标特征,理解各象限内点的坐标特征是解题的关键平面直角坐标系中各象限点的坐标特点:第一象限的点:横坐标0,纵坐标0;第二象限的点:横坐标0;第三象限的点:横坐标0,纵坐标0,纵坐标010、B【分析】根据轴对称的性质判断即可【详解】解:若在第一象限的ABC关于某条直线对称后的
13、DEF在第四象限,则这条直线可以是x轴故选:B【点睛】本题考察了轴对称的性质,利用轴对称的性质找出对称轴是本题的关键二、填空题1、(10,0)【分析】利用点在轴上的坐标特征,得到纵坐标为0,求出的值,代入横坐标,即可求出点坐标【详解】解:点在轴上,故,点横坐标为10,故点坐标为(10,0)故答案为:(10,0)【点睛】本题主要是考查了轴上点的坐标特征,熟练掌握轴上的点的纵坐标为0,是解题的关键2、5【分析】利用关于x轴对称的点的坐标特点可得x、y的值,进而可得答案【详解】解:点M(x,3)与点N(2,y)关于x轴对称,x2,y3,xy5,故答案为:5【点睛】本题考查了坐标与图象变化的轴对称问题
14、,如果在坐标系中,点A与点B关于直线X对称,那么点A的横坐标不变,纵坐标为相反数相反的,如果有两点关于直线Y对称,那么点A的横坐标为相反数,纵坐标不变3、3【分析】根据“关于y轴对称的点,纵坐标相同,横坐标互为相反数”求出m、n的值,然后相加计算即可得解【详解】解:点(1,m)与点(n,2)关于y轴对称,;故答案为:3【点睛】本题考查了关于x轴、y轴对称的点的坐标,解决本题的关键是掌握好对称点的坐标规律:(1)关于x轴对称的点,横坐标相同,纵坐标互为相反数;(2)关于y轴对称的点,纵坐标相同,横坐标互为相反数4、 (-2,3)【分析】根据“关于原点对称的点的坐标关系,横坐标与纵坐标都互为相反数
15、”,即可求解【详解】点(2,-3)关于原点的对称点的坐标是(-2,3) 故答案为:(-2,3)【点睛】本题主要考查点关于原点对称,解决本题的关键是要熟练掌握关于原点对称点的坐标的关系5、5【分析】直接利用关于原点对称点的性质得出a,b的值,代入求解即可【详解】解:点A(a,1)与点B(4,b)关于原点对称,故答案为:5【点睛】本题考查了关于原点对称点的性质及求代数式的值,正确得出a,b的值是解题的关键三、解答题1、见解析【分析】根据各点的坐标描出各点,然后顺次连接即可【详解】解:如图所示:【点睛】本题考查了坐标与图形,熟练掌握相关知识是解题的关键2、(1)见详解;(2)A1B1C1即为所求,见
16、详解,(-2,1);(3)(0,3)【分析】(1)根据点A及点B的坐标,易得y轴在A的左边一个单位,x轴在A的下方3个单位,建立直角坐标系即可;(2)根据平面直角坐标系求出点C坐标,根据ABC关于y轴对称的图形为A1B1C1,求出A1(-1,3),B1(-2,1),C1(-4,7),描点A1(-1,3),B1(-2,1),C1(-4,7),再顺次连接即可画出ABC关于y轴对称的图形为A1B1C1;(3)过C1作y轴平行线与过B作x轴平行线交于G,BG交y轴于H,直接利用轴对称求最短路线的方法,根据点C的对称点为C1,连接BC1与y轴相交,此交点即为点P即可得出PB+PC的值最小,先证GBC1为
17、等腰直角三角形,再证PHB为等腰直角三角形,最后求出y轴交点坐标即可【详解】解:(1)点A坐标为(1 ,3),点B坐标为(2 ,1)点A向左平移1个单位为y轴,再向下平移3个单位为x轴,建立如图平面直角坐标系,如图所示:即为作出的平面直角坐标系;(2)根据图形得出出点C(4,7)ABC关于y轴对称的图形A1B1C1,关于y轴对称的点的特征是横坐标互为相反数,纵坐标不变,A(1,3),B (2,1),C(4,7),A1(-1,3),B1(-2,1),C1(-4,7),在平面直角坐标系中描点A1(-1,3),B1(-2,1),C1(-4,7),顺次连接A1B1, B1C1, C1 A1,如图所示:
18、A1B1C1即为所求,故答案为:(-2,1);(3)如图所示:点P即为所求作的点过C1作y轴平行线与过B作x轴平行线交于G,BG交y轴于H,点C的对称点为C1,连接BC1与y轴相交于一点即为点P,此时PB+PC的值最小,B(2,1),C1(-4,7),C1G=7-1=6,BG=2-(-4)=6,C1G=BG,GBC1为等腰直角三角形,GBC1=45,OHB=90,PHB为等腰直角三角形,yP-1=2-0,解得yP=3,点P(0,3)故答案为(0,3)【点睛】本题考查了建立平面直角坐标系,画轴对称图形,等腰直角三角形判定与性质,最短路径,掌握轴对称的性质及轴对称与坐标的变化规律并利用其准确作图,
19、待定系数法求解析式是解答本题的关键3、图见解析,面积为2【分析】先求出旋转后A1(5,2),B1(2,3),C1(4,1),然后描点,连线,利用矩形面积减三个三角形面积即可【详解】解:的顶点坐标分别为,绕点顺时针旋转,得到,点A1横坐标-1+5-(-1)=5,纵坐标-1+-1-(-4)=2,A1(5,2),点B1横坐标-1+2-(-1)=2,纵坐标-1+-1-(-5)=3,B1(2,3),点C1横坐标-1+4-(-1)=4,纵坐标-1+-1-(-3)=1,C1(4,1),在平面直角坐标系中描点A1(5,2),B1(2,3),C1(4,1),顺次连结A1B1, B1C1,C1A1,则A1B1C1
20、为所求;,=,=,=2【点睛】本题考查三角形旋转画图,割补法求三角形面积,掌握求旋转坐标的方法,描点法画图,割补法求面积是解题关键4、(1)见解析,4;(2)0,-2,-2,-3,-4,0;(3)或【分析】(1)先画出ABC,然后再利用割补法求ABC得面积即可;(2)先作出,然后结合图形确定所求点的坐标即可;(3)先求出PB的长,然后分P在B的左侧和右侧两种情况解答即可【详解】解:(1)画出如图所示:的面积是:;(2)作出如图所示,则(0,-2),( -2,-3),(-4,0)故填:0,-2,-2,-3,-4,0;(3)P为x轴上一点,的面积为4,当P在B的右侧时,横坐标为:当P在B的左侧时,
21、横坐标为,故P点坐标为:或【点睛】本题主要考查了轴对称、三角形的平移、三角形的面积以及平面直角坐标系中点的坐标等知识点,根据题意画出图形成为解答本题的关键5、(1)5;(2)见解析;(3)见解析【分析】(1)利用“补全矩形法”求解ABC的面积;(2)找到A、B、C三点关于x轴的对称点,顺次连接可得A1B1C1;(3)作点A关于y轴的对称点A,连接AC,则AC与y轴的交点即是点Q的位置【详解】解:(1)如图所示:SABC342223415(2)如图所示:(3)如图所示:【点睛】本题考查了轴对称作图及最短路径的知识,难度一般,解答本题注意“补全矩形法”求解格点三角形面积的应用6、(1)见解析;(2
22、);(3)相等,见解析;(4)9【分析】(1)过点作轴于点,轴于点,证明即可得到结论;(2),由可得结论;(3)连接OP,根据题意可得,从而得,再证明S可得,进一步可得结论;(4)过点P作PQy轴,得PQ=OQ=3,根据题意可得,故BQ=3,从而可求出,由(3)得,从而可得【详解】解:(1)过点作轴于点,轴于点,点坐标为又(2)由(1)知 点坐标为,点坐标为,且 (3)相等,理由:连接,如图,且,为中点,又在和中 (4)由(3)知 过点P作PQy轴于点Q,P(3,-3)PQ=OQ=3 =9【点睛】本题主要考查了坐标与图形的性质,全等三角形的判定与性质,等腰直角三角形的性质等知识,找出判定三角形
23、全等的条件是解答本题的关键7、B(2,1),D(2,1)【分析】根据平行于x轴的直线上点的坐标的特点求出纵坐标,再根据ABCD3得出横坐标【详解】解:ABCDx轴,A点坐标为(1,1),点C(1,1),点B、D的纵坐标分别是1,1,ABCD3,点B、D的横坐标分别是-1+3=2,1-3=-2,B(2,1),D(2,1)【点睛】本题主要是考查平行于x轴的直线的特点,解题关键是明确平行于x轴的直线上点的纵坐标相同8、(1)见解析;(2)见解析;(3)(a4,b5)【分析】(1)利用平移变换的性质分别作出A,B,C 的对应点A1,B1,C1即可;(2)利用轴对称变换的性质分别作出A1,B1,C1的对
24、应点A2,B2,C2即可;(3)利用平移变换的性质,轴对称变换的性质解决问题即可【详解】解:(1)如图,A1B1C1即为所求;(2)如图,A2B2C2即为所求;(3)由题意得:P(a4,b5)故答案为:(a4,b5);【点睛】本题考查作图轴对称变换,平移变换的性质等知识,解题的关键是掌握轴对称的性质,平移变换的性质,属于中考常考题型9、画图见解析;B1(1,2);C1(4,1)【分析】图形绕点A逆时针旋转90,将AB,AC逆时针旋转90,得到,连接, 利用网格特点和旋转的性质得出点B1、C1的坐标,从而得到AB1C1【详解】如图所示,AB1C1为所作,B1点的坐标为(1,2),C1点的坐标为(
25、4,1)故答案为(1,2),(4,1)【点睛】本题考察了绕某点画旋转图形以及求点坐标,首先找到旋转的点,根据旋转角度和网格特征,即可得到对应坐标点10、(1)证明见解析,(2)(8,2)【分析】(1)过点C作CQOA于Q,证CQABOA,即可证明点A为线段BC的中点;(2)过点C作CROB于R,过点D作DSOB于S,证CRBBSD,根据全等三角形对应边相等即可求点D的坐标【详解】(1)证明:过点C作CQOA于Q,点B的坐标是,点C的坐标为,CQ=OB=4,CQOBOA90,CAQBAO,CQABOA,CA=AB,点A为线段BC的中点(2)过点C作CROB于R,过点D作DSOB于S,CRBDSBCBD90,CBR+SBD90,SDB+SBD90,CBRSDB,BCDBDC45,CB=DB,CRBBSD,CR=SB,RB=DS,点B的坐标是,点C的坐标为,CR=SB6,RB=DS8,OS=SBOB2,点D的坐标为(8,2)【点睛】本题考查了全等三角形的判定与性质和点的坐标,解题关键是树立数形结合思想,恰当作辅助线,构建全等三角形