2021-2022学年沪教版七年级数学第二学期第十五章平面直角坐标系定向测试练习题(含详解).docx

上传人:知****量 文档编号:28173023 上传时间:2022-07-26 格式:DOCX 页数:31 大小:1.26MB
返回 下载 相关 举报
2021-2022学年沪教版七年级数学第二学期第十五章平面直角坐标系定向测试练习题(含详解).docx_第1页
第1页 / 共31页
2021-2022学年沪教版七年级数学第二学期第十五章平面直角坐标系定向测试练习题(含详解).docx_第2页
第2页 / 共31页
点击查看更多>>
资源描述

《2021-2022学年沪教版七年级数学第二学期第十五章平面直角坐标系定向测试练习题(含详解).docx》由会员分享,可在线阅读,更多相关《2021-2022学年沪教版七年级数学第二学期第十五章平面直角坐标系定向测试练习题(含详解).docx(31页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。

1、七年级数学第二学期第十五章平面直角坐标系定向测试 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、在平面直角坐标系中,点A的坐标为作点A关于x轴的对称点,得到点,再将点向左平移2个单位长度,得到点,则点所在

2、的象限是( )A第一象限B第二象限C第三象限D第四象限2、已知点M(m,1)与点N(3,n)关于原点对称,则m+n的值为()A3B2C2D33、一只跳蚤在第一象限及x轴、y轴上跳动,在第一秒钟,它从原点跳动到(0,1),然后接着按图中箭头所示方向跳动即(0,0)(0,1)(1,1) (1,0) ,且每秒跳动一个单位,那么第25秒时跳蚤所在位置的坐标是( )A(4,0)B(5,0)C(0,5)D(5,5)4、已知点关于x轴的对称点与点关于y轴的对称点重合,则( )A5B1CD5、在平面直角坐标系中,点P(2,3)在( )A第一象限B第二象限C第三象限D第四象限6、如果点P(m,n)是第三象限内的

3、点,则点Q(-n,0)在( )Ax轴正半轴上Bx轴负半轴上Cy轴正半轴上Dy轴负半轴上7、如图为某停车场的平面示意图,若“奥迪”的坐标是(-2,-1),“奔驰”的坐标是(1,-1),则“东风标致”的坐标是( )A(-3,2)B(3,2)C(-3,-2)D(3,-2)8、在平面直角坐标系中,点关于轴的对称点的坐标是( )ABCD9、如图,是由ABO平移得到的,点A的坐标为(-1,2),它的对应点的坐标为(3,4),ABO内任意点P(a,b)平移后的对应点的坐标为( )A(a,b)B(-a,-b)C(a+2,b+4)D(a+4,b+2)10、在平面直角坐标系中,点的坐标是,点与点关于轴对称,则点的

4、坐标是( )ABCD第卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、坐标平面内的点P(m,2020)与点Q(2021,n)关于原点对称,则mn_2、在平面直角坐标系内,点A(a,3)与点B(1,b)关于原点对称,则a+b的值_3、点P(1,2)关于轴的对称点的坐标是_4、在平面直角坐标系中,点P(2,3)到x轴的距离为 _5、在平面直角坐标系中,O为坐标原点,已知:A(3,2),B(5,0),则AOB的面积为_三、解答题(10小题,每小题5分,共计50分)1、如图,在平面直角坐标系中,三个顶点的坐标为、(1)在图中作出关于轴的对称图形;(2)请直接写出点的坐标_;(3)

5、在轴上画出一点使的值最小2、已知:如图,在平面直角坐标系中(1)作出ABC关于y轴对称的A1B1C1,并写出A1B1C1三个顶点的坐标:A1( ),B1( ),C1( );(2)直接写出ABC的面积为 ;(3)在x轴上画点P,使PA+PC最小3、如图,在平面直角坐标系中,已知点A(1,5),B(3,1)和C(4,0)(1)平移线段AB,使点A平移到点C,画出平移后所得的线段CD,并写出点D的坐标;(2)将线段AB绕点A逆时针旋转90,画出旋转后所得的线段AE,并写出点E的坐标;(3)线段MN与线段AB关于原点成中心对称,点A的对应点为点M,画出线段MN并写出点M的坐标;直接写出线段MN与线段C

6、D的位置关系4、在平面直角坐标系中描出以下各点:A(3,2)、B(-1,2)、C(-2,-1)、D(4,-1)顺次连接A、B、C、D得到四边形ABCD;5、如图所示,在平面直角坐标系中,的顶点坐标分别是,和(1)已知点关于轴的对称点的坐标为,求,的值;(2)画出,且的面积为 ;(3)画出与关于轴成对称的图形,并写出各个顶点的坐标6、在由边长为1个单位长度的小正方形组成的网格中建立如图所示平面直角坐标系,原点O及ABC的顶点都在格点上(1)在图中作出DEF,使得DEE与ABC关于x轴对称;(2)写出D,E两点的坐标:D ,E (3)求DEF的面积7、如图所示的方格纸中每个小方格都是边长为1个单位

7、的正方形,建立如图所示的平面直角坐标系.(1)请写出ABC各点的坐标A B C ;(2)若把ABC向上平移2个单位,再向右平移2个单位得,在图中画出,(3)求ABC 的面积8、如图,在平面直角坐标系中,点为坐标原点,点,点在轴的负半轴上,点,连接、,且,(1)求的度数;(2)点从点出发沿射线以每秒2个单位长度的速度运动,同时,点从点出发沿射线以每秒1个单位长度的速度运动,连接、,设的面积为,点运动的时间为,求用表示的代数式(直接写出的取值范围);(3)在(2)的条件下,当点在轴的正半轴上,点在轴的负半轴上时,连接、,且四边形的面积为25,求的长9、如图,已知ABC各顶点的坐标分别为A(-3,2

8、),B(-4,-3),C(-1,-1) (1)请在图中画出ABC关于y轴对称的A1B1C1,(2)并写出A1B1C1的各点坐标10、如图,在平面直角坐标系中,已知的三个顶点都在网格的格点上(1)在图中作出关于轴对称的,并写出点的对应点的坐标;(2)在图中作出关于轴对称的,并写出点的对应点的坐标-参考答案-一、单选题1、C【分析】根据题意结合轴对称的性质可求出点的坐标再根据平移的性质可求出点的坐标,即可知其所在象限【详解】点A的坐标为(1,3),点是点A关于x轴的对称点,点的坐标为(1,-3)点是将点向左平移2个单位长度得到的点,点的坐标为(-1,-3),点所在的象限是第三象限故选C【点睛】本题

9、考查轴对称的性质,平移中点的坐标的变化以及判断点所在的象限根据题意求出点的坐标是解答本题的关键2、C【分析】利用两个点关于原点对称时,它们的坐标符号相反,即点关于原点的对称点是,进而求出即可【详解】解:点与点关于原点对称,故故选:C【点睛】本题主要考查了关于原点对称点的坐标,解题的关键是正确掌握关于原点对称点的性质3、C【分析】根据题意,找出其运动规律,质点每秒移动一个单位,质点到达(1,0)时,共用3秒;质点到达(2,0)时,共用4秒;质点到达(0,2)时,共用4+4=8秒;质点到达(0,3)时,共用9秒;质点到达(3,0)时,共用9+6=15秒;以此类推, 即可得出答案【详解】解:由题意可

10、知,质点每秒移动一个单位质点到达(1,0)时,共用3秒;质点到达(2,0)时,共用4秒;质点到达(0,2)时,共用4+4=8秒;质点到达(0,3)时,共用9秒;质点到达(3,0)时,共用9+6=15秒;以此类推,质点到达(4,0)时,共用16秒;质点到达(0,4)时,共用16+8=24秒;质点到达(0,5)时,共用25秒;故选:C【点睛】本题考查图形变化与运动规律,根据所给质点运动的特点能够正确确定点运动的顺序,确定运动的距离,从而可以得到到达每个点所用的时间找出规律是解题的关键4、D【分析】点关于x轴的对称点(a,-2),点关于y轴的对称点(-3,b),根据(a,-2)与点(-3,b)是同一

11、个点,得到横坐标相同,纵坐标相同,计算a,b计算即可【详解】点关于x轴的对称点(a,-2),点关于y轴的对称点(-3,b),(a,-2)与点(-3,b)是同一个点,a=-3,b=-2,-5,故选D【点睛】本题考查了坐标系中点的轴对称,熟练掌握对称时坐标的变化规律是解题的关键5、C【分析】根据第三象限内点的坐标横纵坐标都为负的直接可以判断【详解】解:在平面直角坐标系中,点P(2,3)在第三象限故选C【点睛】本题考查了平面直角坐标系中各象限内的点的坐标特征,理解各象限内点的坐标特征是解题的关键平面直角坐标系中各象限点的坐标特点:第一象限的点:横坐标0,纵坐标0;第二象限的点:横坐标0;第三象限的点

12、:横坐标0,纵坐标0,纵坐标06、A【分析】根据平面直角坐标系中象限的坐标特征可直接进行求解【详解】解:点P(m,n)是第三象限内的点,n0,-n0,点Q(-n,0)在x轴正半轴上;故选A【点睛】本题主要考查平面直角坐标系中象限的坐标,熟练掌握在第一象限的点坐标为(+,+);在第二象限的点坐标为(-,+),在第三象限的点坐标为(-,-),在第四象限的点坐标为(+,-)是解题的关键7、D【分析】由题意,先建立平面直角坐标系,确定原点的位置,即可得到“东风标致”的坐标【详解】解:“奥迪”的坐标是(2,1),“奔驰”的坐标是(1,1),建立平面直角坐标系,如图所示:“东风标致”的坐标是(3,2);故

13、选:D【点睛】本题考查了坐标确定位置:平面坐标系中的点与有序实数对一一对应;记住平面内特殊位置的点的坐标特征8、B【分析】根据关于x轴的对称点的坐标特点:横坐标不变,纵坐标互为相反数可得答案【详解】解:点P(2,-1)关于x轴的对称点的坐标为(2,1),故选:B【点睛】此题主要考查了关于x轴的对称点的坐标,关键是掌握点的坐标的变化规律9、D【分析】根据点A的坐标和点的坐标确定平移规律,即可求出点P(a,b)平移后的对应点的坐标【详解】解:ABO是由ABO平移得到的,点A的坐标为(-1,2),它的对应点A的坐标为(3,4),ABO平移的规律是:先向右移4个单位长度,再向上平移2个单位长度,ABO

14、内任意点P(a,b)平移后的对应点P的坐标为(a+4,b+2)故选:D【点睛】此题考查了平面直角坐标系中点的平移规律,解题的关键是熟练掌握平面直角坐标系中点的平移规律点向左平移,点的横坐标减小,纵坐标不变;向右平移,点的横坐标增大,纵坐标不变;点向上平移,点的横坐标不变,纵坐标增大;向下平移,点的横坐标不变,纵坐标减小10、C【分析】根据关于轴对称的点坐标的特征:纵坐标不变,横坐标互为相反数,即可求解【详解】解:点的坐标是,点与点关于轴对称,的坐标为,故选:C【点睛】本题主要是考查了关于轴对称的点坐标的特征,熟练掌握关于坐标轴对称的点的特征,是解决该类问题的关键二、填空题1、-1【分析】根据“

15、关于原点对称的点,横坐标与纵坐标都互为相反数”求出m、n的值,然后相加计算即可得解【详解】解:点P(m,-2020)与点Q(2021,n)关于原点对称,m=2021,n=2020,mn=1.故答案为:-1.【点睛】本题考查了关于原点对称的点的坐标,关于原点对称的点的横坐标互为相反数,纵坐标互为相反数2、2【分析】根据点关于原点对称的坐标特点即可完成【详解】点A(a,3)与点B(1,b)关于原点对称 故答案为:2【点睛】本题考查了平面直角坐标系中关于原点对称的点的坐标特征,即横、纵坐标均互为相反数,求代数式的值;掌握这个特征是关键3、【分析】根据若点关于y轴对称的点的坐标为,据此可求解【详解】解

16、:点P(1,2)关于轴的对称点的坐标是;故答案为【点睛】本题主要考查点的坐标关于坐标轴对称问题,熟练掌握点的坐标关于坐标轴对称的特征是解题的关键4、3【分析】根据点的纵坐标的绝对值是点到轴的距离,可得答案【详解】在平面直角坐标系中,点P(2,3)到轴的距离为3故答案为:3【点睛】本题考查了点的坐标,点的纵坐标的绝对值是点到轴的距离,横坐标的绝对值是点到轴的距离5、5【分析】首先在坐标系中标出A、B两点坐标,由于B点在x轴上,所以面积较为容易计算,根据三角形面积的计算公式,即可求出AOB的面积【详解】解:如图所示,过A点作AD垂直x轴于D点,则h=2,故答案为:5【点睛】本题主要考查的是坐标系中

17、三角形面积的求法,需要准确对点位进行标注,并根据公式进行求解即可三、解答题1、(1)见解析;(2);(3)见解析【分析】(1)根据题意得:点、关于轴的对称的的对应点分别为、,再顺次连接,即可求解;(2)根据和关于轴的对称图形,即可求解;(3)作点 关于 轴的对称点 ,连接 交 轴于点 ,根据点 与 关于轴对称,可得,即可求解【详解】解:根据题意得:点、关于轴的对称的的对应点分别为、,画出图形,如图所示:(2)点的坐标为;(3)如图,作点关于 轴的对称点 ,连接 交 轴于点 ,则点即为所求,点 与 关于轴对称, ,即当点 三点共线时,的值最小【点睛】本题主要考查了坐标与图形,图形变换轴对称,线段

18、最短问题,熟练掌握若两点关于y轴对称,则横坐标互为相反数,纵坐标不变;若两点关于x轴对称,则横坐标不变,纵坐标互为相反数;两点间线段最短是解题的关键2、(1)作图见解析,(0,2),(2,4),(4,1);(2)5;(3)见解析【分析】(1)直接利用轴对称图形的性质得出对应点位置进而得出答案;(2)直接利用ABC所在长方形面积减去周围三角形面积进而得出答案;(3)先确定A关于轴的对称点,再连接交轴于则此时满足要求【详解】解:(1)如图所示:A1B1C1即为所求,A1(0,2),B1(2,4),C1(4,1);故答案为:(0,2),(2,4),(4,1);(2)ABC的面积为:121422235

19、;故答案为:5;(3)如图所示:点P即为所求【点睛】本题考查的是轴对称的作图,坐标与图形,掌握“利用轴对称确定线段和取最小值时点的位置”是解本题的关键.3、(1)作图见解析,点D的坐标为(2,-4);(2)作图见解析,点E的坐标为(3,3);(3)作图见解析,点M的坐标为(1,-5);MNCD【分析】(1)根据点A平移到点C,即可得到平移的方向和距离,进而画出平移后所得的线段CD;(2)根据线段AB绕点A逆时针旋转90,即可画出旋转后所得的线段AE;(3)分别作出A,B的对应点M,N,连接即可;由平行线的传递性可得答案【详解】解:(1)如图所示,线段CD即为所求,点D的坐标为(2,-4);(2

20、)如图所示,线段AE即为所求,点E的坐标为(3,3);(3)如图所示,线段MN即为所求,点M的坐标为(1,-5);线段MN与线段AB关于原点成中心对称,MNAB,线段CD是由线段AB平移得到的,CDAB,MNCD【点睛】本题主要考查了利用平移变换和旋转变换作图,解题的关键是理解题意,灵活运用所学知识解决问题4、见解析【分析】根据各点的坐标描出各点,然后顺次连接即可【详解】解:如图所示:【点睛】本题考查了坐标与图形,熟练掌握相关知识是解题的关键5、(1),;(2)作图见详解;13;(3)作图见详解;,【分析】(1)利用关于x轴的对称点的坐标特点(横坐标不变,纵坐标互为相反数)直接写出答案即可;(

21、2)先确定A、B、C点的位置,然后顺次连接,最后运用割补法计算三角形面积即可;(3)先确定A、B、C三点关于y轴对称的对称点位置,然后顺次连接即可;最后直接写出三个点的坐标即可【详解】解:(1)点关于x轴的对称点P的坐标为,;(2)如图:即为所求,SABC=84-1218-1232-1264=13,故答案为:13;(3)如图:A、B、C点关于y轴的对称点为:,顺次连接,即为所求,【点睛】此题主要考查了轴对称变换的作图题,确定组成图形关键点的对称点是解答本题的关键6、(1)见解析;(2)(1,4),(4,1);(3)9.5【分析】(1)先找出点A、B、C关于x轴的对称点,然后依次连接即可得; (

22、2)根据DEF的位置,即可得出D,E两点的坐标;(3)依据割补法进行计算,使用长方形面积减去三个三角形面积即可得到DEF的面积【详解】解:(1)如图所示,DEF即为所求;(2)由图可得,D(1,4),E(4,1);故答案为:(1,4),(4,1);(3)SDEF=55-1225-1223-1235=9.5,面积为9.5【点睛】题目主要考查作轴对称图形,点在坐标系中的位置及利用割补法求三角形面积,熟练掌握轴对称图形的作法是解题关键7、(1);(2)见解析;(3)7【分析】(1)根据平面直角坐标系直接写出点的坐标即可;(2)分别将点的横坐标和纵坐标都加2得到,并顺次连接,则即为所求(3)根据长方形

23、减去三个三角形的面积即可求得ABC 的面积【详解】(1)根据平面直角坐标系可得故答案为:(2)如图所示,分别将点的横坐标和纵坐标都加2得到,并顺次连接,则即为所求(3)的面积等于【点睛】本题考查了坐标与图形,平移作图,掌握平移的性质是解题的关键8、(1);(2);(3)5【分析】(1)根据非负数的性质求得的值,进而求得,即可证明是等腰直角三角形,即可求得的度数;(2)分点在轴正半轴,原点,轴负半轴三种情况,根据点的运动表示出线段长度,进而根据三角形的面积公式即可列出代数式;(3)过点作,连接,根据四边形的面积求得,进而求得,由,设,则,证明,进而可得,进一步导角可得,根据等角对等边即可求得【详

24、解】(1)是等腰直角三角形,(2)当点在轴正半轴时,如图, ,当点在原点时,都在轴上,不能构成三角形,则时,不存在当点在轴负半轴时,如图, , ,综上所述:(3)如图,过点作,连接,设,则, 是等腰直角三角形在和中,是等腰直角三角形中,又【点睛】本题考查了非负数的性质,等腰三角形的性质与判定,全等三角形的性质与判定,正确的添加辅助线是解题的关键9、(1)见解析;(2)A1(3,2),B1(4,-3),C1(1,-1)【分析】(1)分别作出三个顶点关于y轴的对称点,再首尾顺次连接即可;(2)根据所作图形可得答案【详解】解:(1)如图所示,A1B1C1即为所求作(2)由图可知,A1(3,2),B1

25、(4,-3),C1(1,-1)【点睛】本题主要考查作图-轴对称变换,解题的关键是掌握轴对称变换的定义和性质,并据此得出变换后的对应点注意:关于x轴对称的点,横坐标相同,纵坐标互为相反数10、(1)为所求,图形见详解,点B1(-5,-1);(2)为所求,图形见详解,点B2(5,1)【分析】(1)根据关于轴对称的,求出A1(-6,-6),B1(-5,-1),C1(-1,-6),然后在平面直角坐标系中描点,顺次连接A1B1, B1C1,C1A1即可;(2)根据关于轴对称的,求出A2(6,6),点B2(5,1),点C2(1,6),然后在平面直角坐标系中描点,顺次连接A2B2, B2C2,C2A2即可【

26、详解】解:(1)根据点在平面直角坐标系中的位置,ABC三点坐标分别为A(-6,6),B(-5,1),C(-1,6),关于轴对称的,关于x轴对称点的特征是横坐标不变,纵坐标互为相反数,中点A1(-6,-6),点B1(-5,-1),点C1(-1,-6),在平面直角坐标系中描点A1(-6,-6),B1(-5,-1),C1(-1,-6),顺次连接A1B1, B1C1,C1A1,则为所求,点B1(-5,-1);(2)关于轴对称的,点的坐标特征是横坐标互为相反数,纵坐标不变,ABC三点坐标分别为A(-6,6),B(-5,1),C(-1,6),中点A2(6,6),点B2(5,1),点C2(1,6),在平面直角坐标系中描点A2(6,6),B2(5,1),C2(1,6),顺次连接A2B2, B2C2,C2A2,则为所求,点B2(5,1)【点睛】本题考查在平面直角坐标系中画称轴对称的图形,掌握画图方法,先求坐标,描点,顺次连接是解题关键

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 应用文书 > 策划方案

本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

工信部备案号:黑ICP备15003705号© 2020-2023 www.taowenge.com 淘文阁