《2021-2022学年最新沪教版七年级数学第二学期第十五章平面直角坐标系同步测试练习题(含详解).docx》由会员分享,可在线阅读,更多相关《2021-2022学年最新沪教版七年级数学第二学期第十五章平面直角坐标系同步测试练习题(含详解).docx(32页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、七年级数学第二学期第十五章平面直角坐标系同步测试 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、第24届冬季奥林匹克运动会将于2022年2月4日20日在北京市和张家口市联合举行以下能够准确表示张家口市地理
2、位置的是( )A离北京市100千米B在河北省C在怀来县北方D东经114.8,北纬40.82、如图,在一个单位为1的方格纸上,A1A2A3,A3A4A5,A5A6A7,是斜边在x轴上,斜边长分别为2,4,6,.的等腰直角三角形若A1A2A3的顶点坐标分别为A1(2,0),A2(1,-1),A3(0,0),则依图中所示规律,A2021的横坐标为()A-1008B-1010C1012D-10123、已知点M(2,3),点N与点M关于x轴对称,则点N的坐标是()A(2,3)B(2,3)C(3,2)D(2,3)4、在平面直角坐标系中,已知点A(-4,3)与点B关于y轴对称,则点B的坐标为( )A(-4,
3、-3)B(4,3)C(4,-3)D(-4,3)5、在ABC中,ABAC,点B,点C在直角坐标系中的坐标分别是(2,0),(2,0),则点A的坐标可能是( )A(0,2)B(0,0)C(2,2)D(2,2)6、在平面直角坐标系中,点A的坐标为作点A关于x轴的对称点,得到点,再将点向左平移2个单位长度,得到点,则点所在的象限是( )A第一象限B第二象限C第三象限D第四象限7、直角坐标系中,点A(-3,4)与点B(3,-4)关于( )A原点中心对称B轴轴对称C轴轴对称D以上都不对8、平面直角坐标系中,点P(,)和点Q(,)关于轴对称,则的值是( )ABCD9、若点在第一象限,则a的取值范围是( )A
4、BCD无解10、如图为某停车场的平面示意图,若“奥迪”的坐标是(-2,-1),“奔驰”的坐标是(1,-1),则“东风标致”的坐标是( )A(-3,2)B(3,2)C(-3,-2)D(3,-2)第卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、已知在平面直角坐标系中,点在第一象限,且点到轴的距离为2,到轴的距离为5,则的值为_2、如图,已知点A(2,0),B(0,4),C(2,4),若在所给的网格中存在一点D,使得CD与AB垂直且相等(1)直接写出点D的坐标_;(2)将直线AB绕某一点旋转一定角度,使其与线段CD重合,则这个旋转中心的坐标为_3、在平面直角坐标系中,点P(2
5、,5)关于原点对称的点的坐标是 _4、点关于x轴对称的点的坐标为_5、已知,点A(a+1,2)、B(3,b-1)两点关于x轴对称,则C(a,b)的坐标是_三、解答题(10小题,每小题5分,共计50分)1、如图,在平面直角坐标系中,线段AB的两个端点的坐标分别为A(1,2),B(2,4)(1)画出线段AB关于y轴对称的线段A1B1,再画出线段A1B1关于x轴对称的线段A2B2;(2)点A2的坐标为 ;(3)若此平面直角坐标系中有一点M(a,b),点M关于y轴对称的对称点M1,点M1关于x轴对称的对称点M2,则点M2的坐标为 2、在平面直角坐标系xOy中,点M(2,t-2)与点N关于过点(0,t)
6、且垂直于y轴的直线对称(1)当t =-3时,点N的坐标为 ;(2)以MN为底边作等腰三角形MNP当t =1且直线MP经过原点O时,点P坐标为 ;若MNP上所有点到x轴的距离都不小于a(a是正实数),则t的取值范围是 (用含a的代数式表示)3、如图,在平面直角坐标系中,已知的三个顶点都在网格的格点上(1)在图中作出关于轴对称的,并写出点的对应点的坐标;(2)在图中作出关于轴对称的,并写出点的对应点的坐标4、如图1所示,已知点,有以点为顶点的直角的两边分别与轴、轴相交于点(1)试说明;(2)若点坐标为,点坐标为,请直接写出与之间的数量关系;(3)如图2所示,过点作线段,交轴正半轴于点,交轴负半轴于
7、点,使得点为中点,且,绕着顶点旋转直角,使得一边交轴正半轴于点,另一边交轴正半轴于点,此时,和是否还相等,请说明理由;(4)在(3)条件下,请直接写出的值5、如图,在平面直角坐标系中,已知点A(1,4),B(4,4),C(2,1)(1)请在图中画出ABC;(2)将ABC向左平移5个单位,再沿x轴翻折得到A1B1C1,请在图中画出A1B1C1;(3)若ABC 内有一点P(a,b),则点P经上述平移、翻折后得到的点P1的坐是 6、在如图所示的正方形网格中建立平面直角坐标系,的顶点坐标分别为,请按要求解答下列问题:(1)画出关于x轴对称的,并写出点A的对应点的坐标为( , );(2)平行于y轴的直线
8、l经过,画出关于直线l对称的图形,并直接写出( , ),( , ),( , );(3)仅用无刻度直尺作出的角平分线BD,保留画图痕迹(不写画法)7、如图,在直角坐标系中,A(1,5),B(3,0),C(4,3)(1)在图中作出ABC关于y轴对称的图形A1B1C1;(2)写出点A1,B1,C1的坐标8、如图,ABC三个顶点的坐标分别为A(2,4),B(1,1),C(4,3)(1)请画出ABC关于x轴对称的A1B1C1,并写出点A1的坐标(2)请画出ABC绕点B逆时针旋转90后的A2BC2,并写出点A2的坐标9、如图,方格纸中的每个小方格都是边长为1个单位的正方形,在建立平面直角坐标系后,ABC
9、的顶点均在格点上,点A的坐标为(1,-4)(1)A1B1C1是ABC关于y轴的对称图形,则点A的对称点A1的坐标是_,并在图中画出A1B1C1(2)将ABC绕原点逆时针旋转90得到A2B2C2,则A点的对应点A2的坐标是_,并在图中画出A2B2C2 10、如图所示,在平面直角坐标系中,已知,(1)在平面直角坐标系中画出,并求出的面积;(2)在(1)的条件下,把先关于y轴对称得到,再向下平移3个单位得到,则中的坐标分别为( ),( ),( );(直接写出坐标)(3)已知为轴上一点,若的面积为4,求点的坐标-参考答案-一、单选题1、D【分析】若将地球看作一个大的坐标系,每个位置同样有对应的横纵坐标
10、,即为经纬度【详解】离北京市100千米、在河北省、在怀来县北方均表示的是位置的大概范围,东经114.8,北纬40.8为准确的位置信息故选:D【点睛】本题考查了实际问题中的坐标表示,理解经纬度和横纵坐标的本质是一样的是解题的关键2、C【分析】首先确定角码的变化规律,利用规律确定答案即可【详解】解:各三角形都是等腰直角三角形,直角顶点的纵坐标的长度为斜边的一半,A3(0,0),A7(2,0),A11(4,0),20214=505余1,点A2021在x轴正半轴,纵坐标是0,横坐标是(2021+3)2=1012,A2021的坐标为(1012,0)故选:C【点睛】本题是对点的坐标变化规律的考查,根据20
11、21是奇数,求出点的角码是奇数时的变化规律是解题的关键3、D【分析】根据关于x轴对称点的坐标特点:横坐标不变,纵坐标互为相反数可直接得到答案【详解】点M(2,3),点N与点M关于x轴对称,点N的坐标是(2,3),故选:D【点睛】本题考查了坐标轴中轴对称变化,解决本题的关键是掌握好对称点的坐标规律:关于x轴对称的点,横坐标相同,纵坐标互为相反数;关于y轴对称的点,纵坐标相同,横坐标互为相反数;关于原点对称的点,横坐标与纵坐标都互为相反数4、B【分析】利用y轴对称的点的坐标特征:横坐标互为相反数,纵坐标相等,即可求出点B的坐标【详解】解: A(-4,3) ,关于y轴对称点B的坐标为(4,3)故答案
12、为:B【点睛】本题主要是考查了y轴对称的点的坐标特征,熟练掌握关于不同坐标轴对称的点的坐标特征,是解决此类问题的关键5、A【分析】由题意可知BOCO,又ABAC,得点A在y轴上,即可求解【详解】解:由题意可知BOCO,又ABAC,AOBC,点A在y轴上,选项A符合题意,B选项三点共线,不能构成三角形,不符合题意;选项C、D都不在y轴上,不符合题意;故选:A【点睛】本题考查了平面直角坐标系点的特征,解题关键是分析出点A的位置6、C【分析】根据题意结合轴对称的性质可求出点的坐标再根据平移的性质可求出点的坐标,即可知其所在象限【详解】点A的坐标为(1,3),点是点A关于x轴的对称点,点的坐标为(1,
13、-3)点是将点向左平移2个单位长度得到的点,点的坐标为(-1,-3),点所在的象限是第三象限故选C【点睛】本题考查轴对称的性质,平移中点的坐标的变化以及判断点所在的象限根据题意求出点的坐标是解答本题的关键7、A【分析】观察点A与点B的坐标,依据关于原点中心对称的点,横坐标与纵坐标都互为相反数可得答案【详解】根据题意,易得点(-3,4)与(3,-4)的横、纵坐标互为相反数,则这两点关于原点中心对称故选A【点睛】本题考查在平面直角坐标系中,关于原点中心对称的两点的坐标之间的关系掌握关于原点对称的点,横坐标与纵坐标都互为相反数是解答本题的关键8、A【分析】根据题意直接利用关于x轴对称点的性质得出a,
14、b的值,进而代入计即可得出答案【详解】解:点P(,)和点Q(,)关于轴对称,故选:A.【点睛】本题考查关于x轴的对称点的坐标特点,注意掌握关于x轴的对称点的坐标特点为横坐标不变,纵坐标互为相反数.9、B【分析】由第一象限内的点的横纵坐标都为正数,可列不等式组,再解不等式组即可得到答案.【详解】解: 点在第一象限, 由得: 由得: 故选B【点睛】本题考查的是根据点所在的象限求解字母的取值范围,掌握坐标系内点的坐标特点是解本题的关键.10、D【分析】由题意,先建立平面直角坐标系,确定原点的位置,即可得到“东风标致”的坐标【详解】解:“奥迪”的坐标是(2,1),“奔驰”的坐标是(1,1),建立平面直
15、角坐标系,如图所示:“东风标致”的坐标是(3,2);故选:D【点睛】本题考查了坐标确定位置:平面坐标系中的点与有序实数对一一对应;记住平面内特殊位置的点的坐标特征二、填空题1、7【分析】由题意得,即可得【详解】解:由题意得,则,故答案为:7【点睛】本题考查了点的坐标特征,解题的关键是理解题意2、 或【分析】(1)观察坐标系即可得点D坐标;(2)对应点连线段的垂直平分线的交点即为旋转中心【详解】解:(1)观察图象可知,点D的坐标为(6,6),故答案为:(6,6);(2)当点A与C对应,点B与D对应时,如图:此时旋转中心P的坐标为(4,2);当点A与D对应,点B与C对应时,如图:此时旋转中心P的坐
16、标为(1,5);故答案为:(4,2)或(1,5)【点睛】本题考查坐标与图形变化旋转,解题的关键是理解对应点连线段的垂直平分线的交点即为旋转中心3、(2,5)【分析】根据关于原点对称的两个点,横坐标、纵坐标分别互为相反数即可求解【详解】解:点P(2,5)关于原点对称的点的坐标是(2,5)故答案为:(2,5)【点睛】本题考查了关于原点对称的两个点的坐标特征,掌握“关于原点对称的点的横坐标、纵坐标分别互为相反数”是解题的关键4、 (-2,-5)【分析】关于轴对称,横坐标不变,纵坐标互为相反数,进而可求解【详解】解:由点关于轴对称点的坐标为:,故答案为:【点睛】本题主要考查平面直角坐标系中点的坐标关于
17、坐标轴对称问题,熟练掌握点的坐标关于坐标轴对称的方法是解题的关键5、(2,-1)【分析】根据关于x轴的对称点的坐标特点:横坐标不变,纵坐标互为相反数,可得a、b的值,进而可得答案【详解】解:点A(a+1,2)、B(3,b-1)两点关于x轴对称,a+1=3,b-1=-2,解得:a=2,b=-1,C的坐标是(2,-1),故答案为:(2,-1)【点睛】本题主要考查了关于x轴对称的点的坐标,关键是掌握点的坐标变化规律三、解答题1、(1)见详解;(2)(1,2);(3)(-a,-b)【分析】(1)分别作出A、B二点关于y轴的对称点A1、B1,再分别作出A1、B1二点关于x轴的对称点A2、B2即可;(2)
18、根据图示得出坐标即可;(3)根据轴对称的性质得出坐标即可【详解】解:(1)如图所示:线段A1B1和线段A2B2即为所求;(2) 点A2的坐标为(1,2);(3)点M(a,b),关于y轴对称的对称点M1(-a,b),点M1关于x轴对称的对称点M2(-a,-b),故点M2的坐标为(-a,-b)【点睛】本题考查作图-轴对称变换,轴对称-最短问题,两点之间线段最短等知识,解题的关键是熟练掌握轴对称的概念,利用对称解决最短问题,属于中考常考题型2、(1)(2,-1);(2)(-2,1);ta+2或t-a-2【分析】(1)先求出对称轴,再表示N点坐标即可;(2)以MN为底边作等腰三角形MNP,则点P在直线
19、y=t=1上,直线OM与y=1的交点即为所求;表示出M、N、P的坐标,比较纵坐标的绝对值即可【详解】(1)过点(0,t)且垂直于y轴的直线解析式为y=t点M(2,t-2)与点N关于过点(0,t)且垂直于y轴的直线对称可以设N点坐标为(2,n),且MN中点在y=t上,记得点N坐标为当t =-3时,点N的坐标为(2)以MN为底边作等腰三角形MNP,且点M(2,t-2)与点N直线y=t对称点P在直线y=t上,且P是直线OM与y=1的交点当t =1时M(2,-1),N(2,3)OM直线解析式为当y=1时,P点坐标为(-2,1)由题意得,点M坐标为(2,t-2),点N坐标为,点P坐标为,MNP上所有点到
20、x轴的距离都不小于a只需要或者当M、N、P都在x轴上方时,此时,解得ta+2当MNP上与x轴有交点时,此时MNP上所有点到x轴的距离可以为0,不符合要求;当M、N、P都在x轴下方时,此时,解得t-a-2综上ta+2或t-a-2【点睛】本题考查坐标与轴对称、等腰三角形的性质等知识,解题的关键是利用轴对称表示坐标,属于中考常考题型3、(1)为所求,图形见详解,点B1(-5,-1);(2)为所求,图形见详解,点B2(5,1)【分析】(1)根据关于轴对称的,求出A1(-6,-6),B1(-5,-1),C1(-1,-6),然后在平面直角坐标系中描点,顺次连接A1B1, B1C1,C1A1即可;(2)根据
21、关于轴对称的,求出A2(6,6),点B2(5,1),点C2(1,6),然后在平面直角坐标系中描点,顺次连接A2B2, B2C2,C2A2即可【详解】解:(1)根据点在平面直角坐标系中的位置,ABC三点坐标分别为A(-6,6),B(-5,1),C(-1,6),关于轴对称的,关于x轴对称点的特征是横坐标不变,纵坐标互为相反数,中点A1(-6,-6),点B1(-5,-1),点C1(-1,-6),在平面直角坐标系中描点A1(-6,-6),B1(-5,-1),C1(-1,-6),顺次连接A1B1, B1C1,C1A1,则为所求,点B1(-5,-1);(2)关于轴对称的,点的坐标特征是横坐标互为相反数,纵
22、坐标不变,ABC三点坐标分别为A(-6,6),B(-5,1),C(-1,6),中点A2(6,6),点B2(5,1),点C2(1,6),在平面直角坐标系中描点A2(6,6),B2(5,1),C2(1,6),顺次连接A2B2, B2C2,C2A2,则为所求,点B2(5,1)【点睛】本题考查在平面直角坐标系中画称轴对称的图形,掌握画图方法,先求坐标,描点,顺次连接是解题关键4、(1)见解析;(2);(3)相等,见解析;(4)9【分析】(1)过点作轴于点,轴于点,证明即可得到结论;(2),由可得结论;(3)连接OP,根据题意可得,从而得,再证明S可得,进一步可得结论;(4)过点P作PQy轴,得PQ=O
23、Q=3,根据题意可得,故BQ=3,从而可求出,由(3)得,从而可得【详解】解:(1)过点作轴于点,轴于点,点坐标为又(2)由(1)知 点坐标为,点坐标为,且 (3)相等,理由:连接,如图,且,为中点,又在和中 (4)由(3)知 过点P作PQy轴于点Q,P(3,-3)PQ=OQ=3 =9【点睛】本题主要考查了坐标与图形的性质,全等三角形的判定与性质,等腰直角三角形的性质等知识,找出判定三角形全等的条件是解答本题的关键5、(1)见解析;(2)见解析;(3)(a5,b)【分析】(1)结合直角坐标系,可找到三点的位置,顺次连接即可得出ABC(2)将各点分别向左平移5个单位长度,再作出关于x轴的对称点,
24、顺次连接即可得到A1B1C1;(3)根据点的坐标平移规律可得结论【详解】解:(1)如图,ABC即为所画(2)如图,A1B1C1即为所画(3)点P(a,b)向左平移5个单位后的坐标为(a5,b),关于x轴对称手点的坐标为(a5,b) 故答案为:(a5,b)【点睛】此题考查了平移作图、轴对称变换以及直角坐标系的知识,解答本题的关键是掌握平移和轴对称的特点,找到各点在直角坐标系的位置6、(1)图见解析,;(2)图见解析,;(3)见解析【分析】(1)利用关于x轴对称的点的坐标特征得到、的坐标,然后描点即可;(2)根据网格特点和对称的性质,分别作出A、B、C关于直线l的对称点、,然后写出它们的坐标;(3
25、)把AB绕A点逆时针旋转90得到AE,连接BE交AC于D【详解】解:(1)如图,为所作,;(2)如图,为所作,;(3)如图,BD为所作 【点睛】本题考查了平面直角坐标系中点的坐标,画轴对称图形,解题的关键是正确写出点的坐标7、(1)见解析;(2)(1,5),(3,0),(4,3)【分析】(1)根据对称性即可在图中作出ABC关于y轴对称的图形A1B1C1;(2)结合(1)即可写出点A1,B1,C1的坐标【详解】解:(1)如图,A1B1C1即为所求;(2)A1(1,5),B1(3,0),C1(4,3);故答案为:(1,5),(3,0),(4,3)【点睛】本题考查了作图-轴对称变换,解决本题的关键是
26、掌握轴对称性质关于y轴对称的点的坐标特点:横坐标互为相反数,纵坐标相同8、(1)画图见解析,;(2)画图见解析,(-2,2)【分析】(1)根据关于y轴的点的坐标特征分别作出ABC的各个顶点关于x轴的对称点,然后连线作图即可;(2)利用网格特点和旋转的性质画出点A2、B、C2的坐标,然后描点即可得到A2BC2,然后写出点A2的坐标【详解】解:(1)如图,即为所求;是A(2,4)关于x轴对称的点,根据关于x轴对称的点的坐标特征可知:;(2)如图,即为所求,的坐标为(-2,2)【点睛】本题考查轴对称及旋转作图,掌握点的坐标变化规律找准图形对应点正确作图是解题关键9、(1)图见解析,A1(-1,-4)
27、;(2)图见解析,A2(4,1)【分析】(1)根据网格结构,找出点A、B、C关于y轴对称的点A1、B1、C1的位置,然后顺次连接即可,再根据平面直角坐标系写出点A1的坐标即可;(2)根据网格结构,找出点A、B、C绕点逆时针旋转90的对应点A2、B2、C2的位置,然后顺次连接即可,再根据平面直角坐标系写出点A2的坐标即可【详解】解:(1)如图所示,A1B1C1即为所求作的三角形,点A1(-1,-4);(2)如图所示,A2B2C2即为所求作的三角形,点A2(4,1)故答案为:(4,1)【点睛】本题考查了旋转和轴对称作图,掌握画图的方法和图形的特点是关键;注意根据对应点得到对称轴10、(1)见解析,
28、4;(2)0,-2,-2,-3,-4,0;(3)或【分析】(1)先画出ABC,然后再利用割补法求ABC得面积即可;(2)先作出,然后结合图形确定所求点的坐标即可;(3)先求出PB的长,然后分P在B的左侧和右侧两种情况解答即可【详解】解:(1)画出如图所示:的面积是:;(2)作出如图所示,则(0,-2),( -2,-3),(-4,0)故填:0,-2,-2,-3,-4,0;(3)P为x轴上一点,的面积为4,当P在B的右侧时,横坐标为:当P在B的左侧时,横坐标为,故P点坐标为:或【点睛】本题主要考查了轴对称、三角形的平移、三角形的面积以及平面直角坐标系中点的坐标等知识点,根据题意画出图形成为解答本题的关键