《2021-2022学年度北师大版八年级数学下册第六章平行四边形专题测试试卷(精选).docx》由会员分享,可在线阅读,更多相关《2021-2022学年度北师大版八年级数学下册第六章平行四边形专题测试试卷(精选).docx(20页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、北师大版八年级数学下册第六章平行四边形专题测试 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、已知三角形三边长分别为7cm,8cm,9cm,作三条中位线组成一个新的三角形,同样方法作下去,一共做了五个新的
2、三角形,则这五个新三角形的周长之和为( )A46.5cmB22.5cmC23.25cmD以上都不对2、如图,的对角线交于点O,E是CD的中点,若,则的值为( )A2B4C8D163、如图,在正五边形ABCDE中,连接AD,则DAE的度数为( )A46B56C36D264、已知一个正多边形的内角是120,则这个正多边形的边数是()A3B4C5D65、一个正多边形的每个外角都等于45,则这个多边形的边数和对角线的条数分别是( )A8,20B10,35C6,9D5,56、如图,点O是ABCD的对称中心,l是过点O的任意一条直线,它将平行四边形分成甲、乙两部分,在这个图形上做扎针试验,则针头扎在甲、乙
3、两个区域的可能性的大小是( )A甲大B乙大C一样大D无法确定7、正多边形的一个内角等于144,则该多边形是( )A正八边形B正九边形C正十边形D正十一边形8、如图,ABC以点O为旋转中心,旋转180后得到ED是ABC的中位线,经旋转后为线段已知,则BC的值是( )A1B2C4D59、如图,一个直角三角形纸片,剪去直角后,得到一个四边形,则1+2()A90B180C270D36010、如图,一个等边三角形纸片,剪去一个角后得到一个四边形,则图中a的度数是( )A220B180C270D240第卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、如图,是三角形ABC的不同三个外角
4、,则_2、将ABC纸片沿DE按如图的方式折叠若C50,185,则2等于_3、如图,在四边形中,分别是的中点,分别以为直径作半圆,这两个半圆面积的和为,则的长为_4、把一个多边形纸片沿一条直线截下一个三角形后,变成一个十八边形,则原多边形纸片的边数可能是 _5、如图是中国古代建筑中的一个正六边形的窗户,则它的内角和为 _三、解答题(5小题,每小题10分,共计50分)1、如果一个正多边形的内角和是900,则这个正多边形是正几边形?它的对角线的总条数是多少?2、如图,在平行四边形ABCD中,点E、F分别在AD、BC上,且AECF求证:BE/DF3、已知CDAB,BDABAD,AE是ABD的中线,求证
5、:CBAE4、如图,ABCD中,点E、F分别在AB、CD上,且BEDF求证:AFEC5、如图的网格纸中,每个小方格都是边长为1个单位的正方形,三角形ABC的三个顶点都在格点上(每个小方格的顶点叫格点)(1)画出三角形ABC向上平移4个单位后的三角形A1B1C1;(2)画出三角形A1B1C1向左平移5个单位后的三角形A2B2C2;(3)经过(1)次平移线段AC划过的面积是 -参考答案-一、单选题1、C【分析】如图所示,DE,DF,EF分别是三角形ABC的中位线,GH,GI,HI分别是DEF的中位线,则,即可得到DEF的周长,由此即可求出其他四个新三角形的周长,最后求和即可【详解】解:如图所示,D
6、E,DF,EF分别是三角形ABC的中位线,GH,GI,HI分别是DEF的中位线,DEF的周长,同理可得:GHI的周长,第三次作中位线得到的三角形周长为,第四次作中位线得到的三角形周长为第三次作中位线得到的三角形周长为这五个新三角形的周长之和为,故选C【点睛】本题主要考查了三角形中位线定理,解题的关键在于能够熟练掌握三角形中位线定理2、B【分析】根据平行四边形的性质可得,SBOC=SAOD=SCOD=SAOB=8,再根据三角形的中线平分三角形的面积可得根据三角形的中线平分三角形的面积可得SDOE=4,进而可得答案【详解】解:四边形ABCD是平行四边形,SBOC=SAOD=SCOD=SAOB=8,
7、点E是CD的中点,SDOE=SCOD=4,故选:B【点睛】此题主要考查了平行四边形的性质,以及三角形中线的性质,掌握平行四边形的性质,三角形的中线平分三角形的面积是解答本题的关键3、C【分析】在等腰三角形中,求出的度数即可解决问题【详解】在正五边形中,,是等腰三角形,故选:C【点睛】本题主要考查等腰三角形的性质以及正多边形内角,解答本题的关键是求出正五边形的内角,此题基础题,比较简单4、D【分析】设该正多边形为边形,根据多边形的内角和公式,代入求解即可得出结果【详解】解:设该正多边形为边形,由题意得:,解得:,故选:D【点睛】题目主要考查多边形内角和,掌握多边形的内角和公式是解题的关键5、A【
8、分析】利用多边形的外角和是360度,正多边形的每个外角都是45,求出这个多边形的边数,再根据一个多边形有条对角线,即可算出有多少条对角线【详解】解:正多边形的每个外角都等于45,36045=8,这个正多边形是正8边形,=20(条),这个正多边形的对角线是20条故选:A【点睛】本题主要考查的是多边的外角和,多边形的对角线及正多边形的概念和性质,任意多边形的外角和都是360,和边数无关正多边形的每个外角都相等任何多边形的对角线条数为条6、C【分析】如图,连接 记过的直线交于 则为的中点,再证明 可得 从而可得答案.【详解】解:如图,连接 记过的直线交于 为ABCD的对称中心,为的中点, 同理: 所
9、以针头扎在甲、乙两个区域的可能性的大小是一样的,故选C【点睛】本题考查的是全等三角形的判定与性质,平行四边形的性质,随机事件发生的可能性的大小,几何概率的意义,理解几何概率的意义是解本题的关键.7、C【分析】根据多边形内角与外角互补,先求出一个外角,正多边形的外角和等于360,又可表示成36n,列方程可求解:【详解】解: 设所求正多边形边数为n,正多边形的一个内角等于144,正多边形的一个外角=180-144=36,则36n=360,解得n=10故选:C【点睛】本题考查正多边形内角与外角关系,正多边形外角和问题,简单一元一次方程,掌握正多边形内角与外角关系,正多边形外角和问题,简单一元一次方程
10、,利用外角和列方程是解题关键8、C【分析】先根据旋转的性质可得ED ED2,再根据三角形的中位线定理求解即可【详解】解:ABC以点O为旋转中心,旋转180后得到ABC,ED是ABC的中位线,经旋转后为线段ED,EDED2,BC2ED4,故选C【点睛】本题考查旋转的性质、三角形的中位线定理,掌握旋转的性质是解题的关键9、C【分析】首先根据三角形内角和定理算出的度数,再根据四边形内角和为,计算出的度数【详解】解:,故选:C【点睛】本题主要考查了三角形内角和定理,多边形内角和定理,解题的关键是利用三角形的内角和,四边形的内角和10、D【分析】如图(见解析),先根据等边三角形的定义可得,再根据四边形的
11、内角和即可得【详解】解:如图,是等边三角形,即,故选:D【点睛】本题考查了多边形的内角和、等边三角形,熟练掌握多边形的内角和是解题关键二、填空题1、360【分析】利用三角形的外角和定理解答【详解】解:是三角形ABC的不同三个外角,三角形的外角和为360,1+2+3=360,故答案为:360【点睛】本题主要考查了三角形的外角和定理,三角形的外角的性质,属于中考常考题型2、【分析】利用三角形的内角和定理以及折叠的性质,求出,利用四边形内角和为,即可求出2【详解】解:在中,在中, 由折叠性质可知: ,四边形的内角和为, , ,且185,故答案为:【点睛】本题主要是考查了三角形和四边形的内角和定理,熟
12、练利用三角形内角和定理,求出两角之和,最后利用四边形的内角和求得某角的度数,这是解决该题的关键3、4【分析】根据题意连接BD,取BD的中点M,连接EM、FM,EM交BC于N,根据三角形的中位线定理推出EM=AB,FM=CD,EMAB,FMCD,推出ABC=ENC,MFN=C,求出EMF=90,根据勾股定理求出ME2+FM2=EF2,根据圆的面积公式求出阴影部分的面积即可【详解】解:连接BD,取BD的中点M,连接EM、FM,延长EM交BC于N,ABC+DCB=90,E、F、M分别是AD、BC、BD的中点,EM=AB,FM=CD,EMAB,FMCD,ABC=ENC,MFN=C,MNF+MFN=90
13、,NMF=180-90=90,EMF=90,由勾股定理得:ME2+FM2=EF2,阴影部分的面积是:(ME2+FM2)=EF2=8,EF=4.故答案为:4【点睛】本题主要考查对勾股定理,三角形的内角和定理,多边形的内角和定理,三角形的中位线定理,圆的面积,平行线的性质,面积与等积变形等知识点的理解和掌握,能正确作辅助线并求出ME2+FM2的值是解答此题的关键4、十七边形,或十八边形,或十九边形【分析】结合题意,根据多边形截角后边数的性质,分三种截下的方式分析,即可得到答案【详解】把一个多边形纸片沿一条直线截下一个三角形后,变成一个十八边形,有三种截下的方式:下图为多边形局部图,如按下图所示沿虚
14、线截下三角形:原多边形纸片的边数是:十七边形如按下图所示沿虚线截下三角形:原多边形纸片的边数是:十八边形如按下图所示沿虚线截下三角形:原多边形纸片的边数是:十九边形原多边形纸片的边数可能是:十七边形,或十八边形,或十九边形故答案为:十七边形,或十八边形,或十九边形【点睛】本题考查了多边形的知识;解题的关键是熟练掌握多边形的性质,从而完成求解5、720720度【分析】根据多边形内角和可直接进行求解【详解】解:由题意得:该正六边形的内角和为;故答案为720【点睛】本题主要考查多边形内角和,熟练掌握多边形内角和公式是解题的关键三、解答题1、这个正多边形是正七边形,总对角线的条数为14条【分析】根据多
15、边形的内角和公式求解即可,从一个n边形的某个顶点出发,可以引条对角线,则总对角线的条数为条【详解】解:设这个多边形为边形,根据多边形内角和公式可得,解得总对角线的条数为(条)这个正多边形是正七边形,总对角线的条数为14条【点睛】本题考查了多边形的内角和公式,对角线的条数,牢记多边形的内角和公式是解题的关键2、见解析【分析】先求出DEBF,再证明四边形BEDF是平行四边形,即可得出结论【详解】证明:四边形ABCD是平行四边形ADBC,AD/BC,AECF,DEBF,又DE/BF,四边形BEDF是平行四边形,BE/DF【点睛】本题考查了平行四边形的判定与性质;熟练掌握平行四边形的判定方法,证明四边
16、形是平行四边形是解决问题的关键3、见解析【分析】取的中点F,连接,则为的中位线,进而可得,证明即可证明CBAE【详解】证明:如图,取的中点F,连接,CDAB,AE是ABD的中线,在与中CBAE【点睛】本题考查了三角形中线的性质,三角形中位线的性质,三角形全等的性质与判定,添加辅助线是解题的关键4、证明见解析【分析】先证明再证明可得四边形是平行四边形,于是可得结论.【详解】解: ABCD, BEDF,AE=CF,AE/CF 四边形是平行四边形,【点睛】本题考查的是平行四边形的判定与性质,掌握“一组对边平行且相等的四边形是平行四边形”是解本题的关键.5、(1)见解析;(2)见解析;(3)16【分析】(1)先找出A、B、C三个点平移后的位置,然后依次连接即可;(2)先找出、三个点平移后的位置,然后依次连接即可;(3)从图中可知线段AC划过的图形为平行四边形,根据平行四边形面积计算公式即可得【详解】解(1)先找出A、B、C三个点平移后的位置,然后依次连接即可,如图所示,即为所求;(2)先找出、三个点平移后的位置,然后依次连接即可,如图所示,即为所求;(3)线段AC划过的图形为平行四边形,故答案为:16【点睛】题目主要考查图形的平移方法及平行四边形的面积,熟练掌握图形的平移方法是解题关键