2021-2022学年度北师大版八年级数学下册第六章平行四边形专项测试试卷(精选).docx

上传人:知****量 文档编号:28172754 上传时间:2022-07-26 格式:DOCX 页数:21 大小:352.60KB
返回 下载 相关 举报
2021-2022学年度北师大版八年级数学下册第六章平行四边形专项测试试卷(精选).docx_第1页
第1页 / 共21页
2021-2022学年度北师大版八年级数学下册第六章平行四边形专项测试试卷(精选).docx_第2页
第2页 / 共21页
点击查看更多>>
资源描述

《2021-2022学年度北师大版八年级数学下册第六章平行四边形专项测试试卷(精选).docx》由会员分享,可在线阅读,更多相关《2021-2022学年度北师大版八年级数学下册第六章平行四边形专项测试试卷(精选).docx(21页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。

1、北师大版八年级数学下册第六章平行四边形专项测试 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、如图,在平行四边形 ABCD 中,BC2AB8,连接 BD,分别以点B,D为圆心,大于BD长为半径作弧,两弧交

2、于点E和点F,作直线EF交AD于点I,交BC于点H,点H恰为BC的中点,连接AH,则AH的长为( )AB6C7D42、如图,在平行四边形中,于点,把以点为中心顺时针旋转一定角度后,得到,已知点在上,连接若,则的大小为( )A140B155C145D1353、下列A:B:C:D的值中,能判定四边形ABCD是平行四边形的是( )A1:2:3:4B1:4:2:3C1:2:2:1D3:2:3:24、平行四边形OABC在平面直角坐标系中的位置如图所示,AOC45,OAOC,则点B的坐标为()A(,1)B(1,)C(1,1)D(1,1)5、从n边形的一个顶点出发,可以作5条对角线,则n的值是()A6B8C

3、10D126、正八边形的外角和为( )ABCD7、四边形四条边长分别是a,b,c,d,其中a,b为对边,且满足,则这个四边形是( )A任意四边形B平行四边形C对角线相等的四边形D对角线垂直的四边形8、下列多边形中,内角和与外角和相等的是( )A三角形B四边形C五边形D六边形9、如图,在四边形中,ABCD,添加下列一个条件后,一定能判定四边形是平行四边形的是( )ABCD10、如图,一个等边三角形纸片,剪去一个角后得到一个四边形,则图中的度数是( )A180B220C240D260第卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、一个正多边形的边长为6,它的内角和是外角和的

4、2倍,则它的边心距是_2、某正多边形的内角和为,则这个正多边形是正_边形3、一个多边形的内角和为1080,则它是_边形4、如图所示,在ABC中,BCAC,点D在BC上,DCAC10,且,作ACB的平分线CF交AD于点F,CF8,E是AB的中点,连接EF,则EF的长为_5、如图是中国古代建筑中的一个正六边形的窗户,则它的内角和为 _三、解答题(5小题,每小题10分,共计50分)1、如图1,在等边中,点D,E分别在边上,连接,点M,P,N分别为的中点 (1)观察猜想:图1中,线段与的数量关系是 , ;(2)探究证明:把绕点A逆时针方向旋转到图2的位置,连接,则上面题(1)中的两个结论是否依然成立,

5、并说明理由;(3)拓展延伸:把绕点A在平面内自由旋转,若,请直接写出周长的最大值2、如图,四边形ABCD是平行四边形,E,F是对角线AC的三等分点,连接BE,DF证明BE=DF3、如图,中,对角线AC、BD相交于点O,点 E, F,G,H分别是OA、OB、OC、OD的中点,顺次连接EFGH(1)求证:四边形EFGH 是平行四边形(2)若的周长为2(AB+BC)=32,则四边形EFGH的周长为_4、化简、求解(1)若a,b,c是ABC的三边的长,化简|a-b-c|+|b-c-a|+|c+a-b|(2)已知一正多边形的内角与其相邻的外角的比为3:1,求该多边形的边数5、如图,ABCD的对角线AC,

6、BD相交于点O,点E,点F在线段BD上,且DEBF求证:AECF-参考答案-一、单选题1、A【分析】连接DH,根据作图过程可得EF是线段BD的垂直平分线,证明DHC是等边三角形,然后证明AHD=90,根据勾股定理可得AH的长【详解】解:如图,连接DH,根据作图过程可知:EF是线段BD的垂直平分线,DH=BH,点H为BC的中点,BH=CH,BC=2CH,DH=CH,在ABCD中,AB=DC,AD=BC=2AB=8,DH=CH=CD=4,DHC是等边三角形,C=CDH=DHC=60,在ABCD中,BAD=C=60,ADBC,DAH=BHA,AB=BH,BAH=BHA,BAH=DAH=30,AHD=

7、90,AH=故选:A【点睛】本题考查了作图-基本作图,线段垂直平分线的性质,等边三角形的判定和性质,平行四边形的性质,勾股定理等知识点,解决本题的关键是掌握线段垂直平分线的作法2、C【分析】根据题意求出ADF,根据平行四边形的性质求出ABC、BAE,根据旋转变换的性质、结合图形计算即可【详解】解:ADC=70,CDF=15,ADF=55,四边形ABCD是平行四边形,ABC=ADC=70,ADBC,BFD=125,AEBC,BAE=20,由旋转变换的性质可知,BFG=BAE=20,DFG=DFB+BFG=145,故选:C【点睛】本题考查的是平行四边形的性质、旋转变换的性质,掌握旋转前、后的图形全

8、等是解题的关键3、D【分析】两组对角分别相等的四边形是平行四边形,所以A和C是对角,B和D是对角,对角的份数应相等【详解】解:根据平行四边形的判定:两组对角分别相等的四边形是平行四边形,所以只有D符合条件故选:D【点睛】本题考查了平行四边形的判定,在应用判定定理判定平行四边形时,应仔细观察题目所给的条件,仔细选择适合于题目的判定方法进行解答,避免混用判定方法4、C【分析】作,求得、的长度,即可求解【详解】解:作,如下图:则在平行四边形中,为等腰直角三角形则,解得故选:C【点睛】此题考查了平行四边形的性质,等腰直角三角形的性质以及勾股定理,解题的关键是灵活运用相关性质进行求解5、B【分析】根据从

9、边形的一个顶点出发可以作条对角线即可得【详解】解:由题意得:,解得,故选:B【点睛】本题考查了多边形的对角线问题,熟练掌握“从边形的一个顶点出发可以作条对角线”是解题关键6、A【分析】根据多边形的外角和都是即可得解【详解】解:多边形的外角和都是,正八边形的外角和为,故选:A【点睛】此题考查了多边形的内角与外角,熟记多边形的外角和是是解题的关键7、B【分析】根据完全平方公式分解因式得到a=b,c=d,利用边的位置关系得到该四边形的形状【详解】解:,a=b,c=d,四边形四条边长分别是a,b,c,d,其中a,b为对边,c、d是对边,该四边形是平行四边形,故选:B【点睛】此题考查了完全平方公式分解因

10、式,平行四边形的判定方法,熟练掌握完全平方公式分解因式是解题的关键8、B【分析】根据多边形的内角和公式(n-2)180与多边形的外角和定理列式进行计算即可得解【详解】解:设多边形的边数为n,根据题意得(n-2)180=360,解得n=4故选:B【点睛】本题考查了多边形的内角和公式与外角和定理,熟记公式与定理是解题的关键9、C【分析】由平行线的性质得,再由,得,证出,即可得出结论【详解】解:一定能判定四边形是平行四边形的是,理由如下:,又,四边形是平行四边形,故选:C【点睛】本题考查了平行四边形的判定,解题的关键是熟练掌握平行四边形的判定,证明出10、C【分析】根据四边形内角和为360及等边三角

11、形的性质可直接进行求解【详解】解:由题意得:等边三角形的三个内角都为60,四边形内角和为360,;故选C【点睛】本题主要考查多边形内角和及等边三角形的性质,熟练掌握多边形内角和及等边三角形的性质是解题的关键二、填空题1、【分析】先根据多边形的内角和公式以及外角和等于360确定多边形的边数,然后运用勾股定理解答即可【详解】解:根据题意,得(n2)180=3602解得:n6如图:ACB=60,ACD=30,AC=6AD=3CD=故填【点睛】本题主要考查了多边形的内角和与外角和以及勾股定理的应用,根据题意求得正多边形的边数并画出图形成为解答本题的关键2、故答案为:12【点睛】本题主要考查了多边形的内

12、角和定理,准确计算是解题的关键60七【分析】根据多边形的内角和公式进行求解即可【详解】解:解得故答案为:七【点睛】本题考查了多边形的内角和公式,理解多边形的内角和公式是解题的关键3、八【分析】根据多边形的内角和公式求解即可n边形的内角的和等于: (n大于等于3且n为整数)【详解】解:设该多边形的边数为n,根据题意,得,解得,这个多边形为八边形,故答案为:八【点睛】此题考查了多边形的内角和,解题的关键是熟练掌握多边形的内角和公式4、4【分析】根据等腰三角形的性质得到F为AD的中点,CFAD,根据勾股定理得到DF=6,根据三角形的中位线定理即可得到结论【详解】解:DC=AC=10,ACB的平分线C

13、F交AD于F,F为AD的中点,CFAD,CFD=90,DC=10,CF=8,DF=6,AD=2DF=12,BD=8,点E是AB的中点,EF为ABD的中位线,EF=BD=4,故答案为:4【点睛】本题考查了三角形的中位线定理,等腰三角形的性质,勾股定理,证得EF是ABD的中位线是解题的关键5、720720度【分析】根据多边形内角和可直接进行求解【详解】解:由题意得:该正六边形的内角和为;故答案为720【点睛】本题主要考查多边形内角和,熟练掌握多边形内角和公式是解题的关键三、解答题1、(1),;(2)成立,见解析;(3)【分析】(1)利用三角形的中位线定理以及平行线的性质解决问题即可;(2)证明AB

14、DACE(SAS),推出BD=CE,再利用三角形的中位线定理解决问题即可;(3)首先证明点D恰好在BA延长线上时,PM 、PN的最大值为7,再利用30度角的直角三角形的性质以及勾股定理,求出M N的长度即可解决问题【详解】解:(1)ABC是等边三角形,AB=AC,A=60,AD=AE,AB-AD=AC-AE,即BD=CE,M,P,N分别是DE,DC,BC的中点,MP=EC,PMEC,PN=BD,PNBD,PM=PN,MPD=ACD,NPD=ADC,在ACD中,ADC+ACD=180-A=120,MPN=MPD+NPD=120故答案为:PM=PN,120;(2)成立,理由如下:AB=AC,AD=

15、AE,BAC=DAE=60,ABC=ACB=60,BAD=CAE,AB=AC,BAD=CAE,AD=AE,ABDACE(SAS),BD=CE,DM=ME,DP=PC,BN=NC,MP=EC,PMEC,PN=BD,PNBD,MP=PN,PMN是等腰三角形PMCE,DPM=DCE,PNBD,PNC=DBC,DPN=DCB+PNC=DCB+DBC,MPN=DPM+DPN=DCE+DCB+DBC=BCE+DBC=ACB+ACE+DBC=ACB+ABD+DBC=ACB+ABC,BAC=60,ACB+ABC=120,MPN=120,PM=PN,MPN=120;(3)由(2)知:PM=PN,MPN=120,

16、BDAB+AD,BD14,点D恰好在BA延长线上时,BD、CE取得最大值,且最大值为14,PM 、PN的最大值为7,此时MN经过点A,即MN垂直平分BC,如图:ABC、ADE是等边三角形,且AD=4,AB=10,BAN=DAM=30,BN=CN=5,DM=EM=2, AN=5,AM=2,PMN周长的最大值为PM+PN+MN=7+7+5+2=14+7【点睛】本题属于几何变换综合题,考查了等边三角形的性质,全等三角形的判定和性质,三角形的中位线定理,三角形的面积等知识,解题的关键是正确寻找全等三角形解决问题,属于中考压轴题2、见详解【分析】由题意易得AB=CD,ABCD,AE=CF,则有BAE=D

17、CF,进而问题可求证【详解】证明:四边形ABCD是平行四边形,AB=CD,ABCD,BAE=DCF,E,F是对角线AC的三等分点,AE=CF,在ABE和CDF中,ABECDF(SAS),BE=DF【点睛】本题主要考查平行四边形的性质及全等三角形的性质与判定,熟练掌握平行四边形的性质及全等三角形的性质与判定是解题的关键3、(1)见解析;(2)16【分析】(1)根据平行四边形的性质,可得OA=OC,OB=OD,从而得到OE=OG,OF=OH,即可求证;(2)根据三角形中位线定理,可得,从而得到 ,再由(1)四边形EFGH是平行四边形,即可求解【详解】(1)证明:四边形ABCD是平行四边形,OA=O

18、C,OB=OD,点 E、 F、G、H分别是OA、OB、OC、OD的中点,OE=OG,OF=OH,四边形EFGH是平行四边形;(2)点 E、 F、G、H分别是OA、OB、OC、OD的中点, ,的周长为2(AB+BC)=32, , ,由(1)知:四边形EFGH是平行四边形,四边形EFGH的周长为 【点睛】本题主要考查了平行四边形的判定和性质,三角形的中位线定理,熟练掌握平行四边形的判定和性质定理,三角形的中位线定理是解题的关键4、(1)a-b+3c;(2)这个多边形的边数为8【分析】(1)利用三角形的三边关系得到a-b-c0,b-c-a0,然后去绝对值符号后化简即可;(2)根据正多边形的内角与外角

19、是邻补角求出每一个外角的度数,再根据多边形的边数等于360除以每一个外角的度数列式计算即可得到边数【详解】解:(1)|a-b-c|+|b-c-a|+|c+a-b|=b+c-a+a+c-b+c+a-b =a-b+3c (2)正多边形的内角与其外角的度数比为3:1每一个外角为18045 边数360458 即这个多边形的边数为8【点睛】此题考查三角形的三边关系,利用三角形任意两边之和大于第三边,任意两边之差小于第三边,建立不等式解决问题5、见解析【分析】首先根据平行四边形的性质推出ADCB,ADBC,得到ADECBF,从而证明ADECBF,得到AEDCFB,即可证明结论【详解】证:四边形ABCD是平行四边形,ADCB,ADBC,ADECBF,在ADE和CBF中,ADECBF(SAS),AEDCFB,AECF【点睛】本题考查平行四边形的性质,以及全等三角形的判定与性质等,掌握平行四边形的基本性质,准确证明全等三角形并利用其性质是解题关键

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 应用文书 > 策划方案

本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

工信部备案号:黑ICP备15003705号© 2020-2023 www.taowenge.com 淘文阁