《2021-2022学年度北师大版八年级数学下册第六章平行四边形专题测评练习题(精选).docx》由会员分享,可在线阅读,更多相关《2021-2022学年度北师大版八年级数学下册第六章平行四边形专题测评练习题(精选).docx(28页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、北师大版八年级数学下册第六章平行四边形专题测评 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、如图,在四边形中,ABCD,添加下列一个条件后,一定能判定四边形是平行四边形的是( )ABCD2、一个多边形每
2、一个外角都等于30,则这个多边形的边数为()A11B12C13D143、如图,已知正方形ABCD中,G、P分别是DC、BC上的点,E、F分别是AP、GP的中点,当P在BC上从B向C移动而G不动时,下列结论成立的是( )A线段EF的长逐渐增大B线段EF的长逐渐减小C线段EF的长不改变D线段EF的长不能确定4、如图,一个等边三角形纸片,剪去一个角后得到一个四边形,则图中的度数是( )A180B220C240D2605、在下列条件中能判定四边形ABCD是平行四边形的是( )AAB=BC,AD=DCBABCD,AD=BCCABCD,B=DDA=B,C=D6、已知一个多边形的外角都等于,那么这个多边形的
3、边数为( )A6B7C8D97、正八边形的外角和为( )ABCD8、从一个多边形的顶点出发,可以作2条对角线,则这个多边形的内角和是( )ABCD9、将正六边形与正五边形按如图所示方式摆放,公共顶点为O,且正六边形的边AB与正五边形的边DE在同一条直线上,则COF的度数是()A74B76C84D8610、一个多边形纸片剪去一个内角后,得到一个内角和为2340的新多边形,则原多边形的边数为( )A14或15或16B15或16或17C15或16D16或17第卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、已知一个正五边形其一个内角的度数为 _2、七边形内角和的度数是_3、如图
4、,在ABCD中,点E是对角线AC上一点,过点E作AC的垂线,交边AD于点P,交边BC于点Q,连接PC、AQ,若AC6,PQ4,则PCAQ的最小值为_4、在平行四边形ABCD中,若A=130,则B=_,C=_,D=_5、若一个多边形的内角和是外角和的倍,则它的边数是_三、解答题(5小题,每小题10分,共计50分)1、证明:n边形的内角和为(n-2)180(n3)2、ABC和ADE均为等腰直角三角形,BACDAE90,将ADE绕点A逆时针旋转一周,连接DB,将线段DB绕点D逆时针旋转90得DF,连接EF(1)如图1,当D在AC边上时,线段CD与EF的关系是 , (2)如图2,当D在ABC的内部时,
5、(1)的结论是否成立?说明理由;(3)当AB3,AD,DAC 45时,直接写出DEF的面积3、在平面直角坐标系xOy中,点A(x,m)在第四象限,A,B两点关于x轴对称,x+n(n为常数),点C在x轴正半轴上,(1)如图1,连接AB,直接写出AB的长为 ;(2)延长AC至D,使CDAC,连接BD如图2,若OAAC,求线段OC与线段BD的关系;如图3,若OCAC,连接OD点P为线段OD上一点,且PBD45,求点P的横坐标4、如图,MNPQ,直线与、分别交于点、,点在直线上,过点作,垂足为点(1)求证:;(2)若点在线段上不与、重合,连接,和的平分线交于点,请在图中补全图形,猜想并证明与的数量关系
6、;(3)若直线的位置如图所示,中的结论是否成立?若成立,请证明;若不成立,请直接写出与的数量关系5、如图,在边长为6的等边中,点为边上任意一点,连接将线段绕点逆时针旋转,点的对应点是点,连接、(1)如图1,求证:;(2)如图2,在旋转过程中,取、的中点、,连接和,当时,试猜想与的大小关系,写出你猜想的关系式,并证明;(3)如图2,在整个旋转过程中,的长度是否发生变化,若不变化,直接写出的值,若变化,请直接写出的取值范围-参考答案-一、单选题1、C【分析】由平行线的性质得,再由,得,证出,即可得出结论【详解】解:一定能判定四边形是平行四边形的是,理由如下:,又,四边形是平行四边形,故选:C【点睛
7、】本题考查了平行四边形的判定,解题的关键是熟练掌握平行四边形的判定,证明出2、B【分析】根据一个多边形每一个外角都等于30,多边形外角和360,根据多边形外角和的性质求解即可【详解】解:一个多边形每一个外角都等于30,多边形外角和360,多边形的边数为故选B【点睛】此题考查了多边形的外角和,关键是掌握多边形的外角和为3603、C【分析】连接AG,根据三角形中位线定理可得EF= AG,因此线段EF的长不变【详解】解:如图,连接AG,E、F分别是AP、GP的中点, EF为APG的中位线,EF= AG,为定值线段EF的长不改变故选C【点睛】本题考查了三角形的中位线定理,只要三角形的边AG不变,则对应
8、的中位线的长度就不变4、C【分析】根据四边形内角和为360及等边三角形的性质可直接进行求解【详解】解:由题意得:等边三角形的三个内角都为60,四边形内角和为360,;故选C【点睛】本题主要考查多边形内角和及等边三角形的性质,熟练掌握多边形内角和及等边三角形的性质是解题的关键5、C【分析】根据两组对角分别相等的四边形是平行四边形进行判断即可【详解】解:能判定四边形ABCD是平行四边形的是ABCD,B=D,理由如下:ABCD,B+C=180,B=D,D+C=180, ADBC,四边形ABCD是平行四边形,故选:C【点睛】本题考查了平行四边形的判定;熟练掌握平行四边形的判定方法是解题的关键6、D【分
9、析】根据多边形外角公式,代入角度求出n即可【详解】外角故多边形边数为9故选D【点睛】本题考查多边形外角公式,掌握该公式是本题解题关键7、A【分析】根据多边形的外角和都是即可得解【详解】解:多边形的外角和都是,正八边形的外角和为,故选:A【点睛】此题考查了多边形的内角与外角,熟记多边形的外角和是是解题的关键8、D【分析】根据从多边形的一个顶点可以作对角线的条数公式(n3)求出边数,然后根据多边形的内角和公式(n2)180列式进行计算即可得解【详解】解:多边形从一个顶点出发可引出2条对角线,n3=2,解得:n=5,内角和=(52)180=540故选:D【点睛】本题考查了多边形的内角和公式能够利用多
10、边形的对角线的公式,求出多边形的边数是解题的关键9、C【分析】利用正多边形的性质求出EOF,BOC,BOE即可解决问题【详解】解:由题意得:EOF108,BOC120,OEB72,OBE60,BOE180726048,COF3601084812084,故选:【点睛】本题考查正多边形,三角形内角和定理等知识,解题的关键是熟练掌握基本知识10、A【分析】由题意先根据多边形的内角和公式先求出新多边形的边数,然后再根据截去一个角的情况进行讨论即可【详解】解:设新多边形的边数为n,则(n-2)180=2340,解得:n=15,若截去一个角后边数增加1,则原多边形边数为14,若截去一个角后边数不变,则原多
11、边形边数为15,若截去一个角后边数减少1,则原多边形边数为16,所以多边形的边数可以为14,15或16故选:A【点睛】本题考查多边形内角与外角,熟练掌握多边形的内角和公式(n-2)180(n为边数)是解题的关键二、填空题1、#【分析】先由正五边形的外角和为及每一个外角都相等求解一个外角,再根据这个外角与相邻的内角互补,从而可得答案.【详解】解:由正五边形的每一个外角都相等, 正五边形的每一个外角 正五边形的每一个内角为: 故答案为:【点睛】本题考查的是正多边形的内角,外角的性质,掌握正多边形的外角和为,每一个外角都相等是解本题的关键.2、900900度【分析】根据多边形内角和公式计算即可【详解
12、】解:七边形内角和的度数是,故答案为:900【点睛】本题考查了多边形内角和公式,解题关键是熟记n边形内角和公式:3、【分析】利用平行四边形的知识,将的最小值转化为的最小值,再利用勾股定理求出MC的长度,即可求解;【详解】过点A作且,连接MP,四边形是平行四边形,将的最小值转化为的最小值,当M、P、C三点共线时,的最小,在中,;故答案是:【点睛】本题主要考查了平行线的判定与性质,勾股定理,准确计算是解题的关键4、 【分析】利用平行四边形的性质:邻角互补,对角相等,即可求得答案【详解】解:在平行四边形ABCD中,、是的邻角,是的对角, 故答案为: ,【点睛】本题主要是考查了平行四边形的性质:对角相
13、等,邻角互补,熟练掌握平行四边形的性质,求解决本题的关键5、【分析】根据多边形的内角和公式(n2)180以及外角和定理列出方程,然后求解即可【详解】解:设这个多边形的边数是n,根据题意得,(n2)1802360,解得n6答:这个多边形的边数是6故答案为:6【点睛】本题考查了多边形的内角和公式与外角和定理,需要注意,多边形的外角和与边数无关,任何多边形的外角和都是360三、解答题1、见解析【分析】在n边形内任取一点O,连接O与各顶点的线段把n边形分成了n个三角形,然后利用n个三角形的面积减去以O为公共顶点的n个角的和,即可求证【详解】已知: n边形A1A2An,求证: ,证明:如图,在n边形内任
14、取一点O,连接O与各顶点的线段把n边形分成了n个三角形,n个三角形内角和为n180,以O为公共顶点的n个角的和360(即一个周角),n边形内角和为 【点睛】本题主要考查了多边形的内角和,做适当辅助线,得到n边形的内角和等于n个三角形的面积减去以O为公共顶点的n个角的和是解题的关键2、(1)CDEF,CD=EF;(2)结论成立,理由见解析;(3)1或2【分析】(1)如图所示,连接CE,延长BD交CE于H,先证明BADCAE得到BD=CE,ABD=ACE,然后证明四边形CDFE是平行四边形,即可得到CDEF,CD=EF;(2)连接CE,延长BD交CE于点H,交AC于点G, 类似(1)进行证明即可;
15、(3)分两种情况:当D在直线AC的左侧和当D在直线AC的右侧,分别讨论求解即可【详解】解:(1)CDEF ,CD=EF,理由如下:如图所示,连接CE,延长BD交CE于H,ABC和ADE均为等腰直角三角形,BACDAE90,AB=AC,AE=AD,BADCAE(SAS),BD=CE,ABD=ACE,ABD+ADB=90,ADB=CDH,ACE+CDH=90,BHC=90,BHE=90,由旋转的性质可得BDF=90,BD=FD,BDF=BHE=90,BD=CE,DFCE,四边形CDFE是平行四边形,CDEF,CD=EF;(2)结论成立,理由如下:连接CE,延长BD交CE于点H,交AC于点G,BAC
16、=DAE=90,DAB=EAC=90-DAC,AB=AC ,AD=AE,ADBAEC(SAS),BD=CE ,DBA=ECA,BGA+DBA=90,BGA=CGH ,DBA=ECA,CGH+ECA=90,DHE=90,由旋转的性质可得BDF=90,BD=FD,DFCE,DF=BD,DFCE,CD=CE, 四边形DCEF是平行四边形 CDEF,CD=EF;(3)如图3所示,当DAC=45时,设AC与DE交于H,ADE=90,EAC=ADC=45,又AD=AE,;,由(2)可知四边形DFEC是平行四边形,;如图4所示,当DAC=45时,DAC=ADE=45,ACDE,同理可证四边形CEFD是平行四
17、边形,综上所述,DEF的面积为1或2【点睛】本题主要考查了旋转的性质,等腰直角三角形的性质与判定,全等三角形的性质与判定,平行四边形的性质与判定,解题的关键在于能够正确作出辅助线构造平行四边形求解3、(1)6;(2)OCBD,OCBD;3【分析】(1)利用二次根式的被开方数是非负数,求出m3,判断出A,B两点坐标,可得结论;(2)结论:OCBD,OCBD连接AB交x轴于点T利用等腰三角形的三线合一的性质得出OC2CT,利用三角形中位线定理得出CTBD,BD2CT,由此即可得;连接AB交OC于点T,过点P作PHOC于H证明OTBPHO(AAS),推出BTOH3,即可得出结论【详解】解:(1)由题
18、意,m3,xn,A(n,3),A,B关于x轴对称,B(n,3),AB3(3)6,故答案为:6;(2)结论:OCBD,OCBD理由:如图,连接AB交x轴于点TA,B关于x轴对称,ABOC,ATTB,AOAC,OTCT(等腰三角形的三线合一),OC2CT,ACCD,ATTB,CTBD,BD2CT,OCBD,OCBD;如图,连接AB交OC于点T,过点作于点,ACOCCD,COAOAC,CODCDO,2OAC+2CDO180,OAC+CDO90,AOD90,A,B关于x轴对称,OTAB,OAOB,OBTOAT, COD+AOC90,AOC+OAT90,OATCOD,OBTCOD,即OBTPOH,BDO
19、C,PDBPOHOBT,ABD90,PBD45,ABP45,OBPOBT+ABPOBT+45,OPBPBD+PDB45+PDB,OBPOPB, OBPO,在和中,OTBPHO(AAS),BTOH3,故点P的横坐标为3【点睛】本题考查了坐标与轴对称变化、三角形中位线定理、等腰三角形的三线合一等知识点,较难的是题(2),通过作辅助线,构造全等三角形是解题关键4、(1)见解析;(2)或,证明见解析;(3)不成立,存在:;,理由见解析【分析】根据,内错角相等,根据,可得AGB=90,根据三角形外角性质得出,可得;(2) 过H作HKMN,由,由三角形外角性质可得,根据平分,平分,可得,得出,由HKMN,
20、可得HKMNPQ,可得,得出,根据点C的位置分两种情况如图,当点在上时,利用三角形外角性质,如图,当点在上时, 根据中,即可;过H作HKMN,根据,可得HKMNPQ,利用平行线性质可得MAH=AHK,PBH=KHB,可推得,根据角平分线得出,根据四边形内角和ACB+HAC+AHB+HBC=360,得出ACB=360-2AHB,根据点C的位置分两种情况如图,当点在上时,根据外角性质,如图,当在上时,根据直角三角形两锐角互余可得,即可【详解】解:如图,AGB=90是的外角, ,;或,证明:过H作HKMN,是的外角,平分,平分,HKMN,HKMNPQ,MAH=AHK,PBH=KHB,如图,当点在上时
21、,又是的外角,即;如图,当点在上时, 又中,即;中的结论不成立存在:;过H作HKMN,HKMN,HKMNPQ,MAH=AHK,PBH=KHB,平分,平分,ACB+HAC+AHB+HBC=360,ACB+2AHB =360,ACB=360-2AHB,如图,当点在上时,又是的外角,即;如图,当在上时,又中,【点睛】本题考查平行线性质,三角形外角性质,角平分线定义,直角三角形两锐角互余,四边形内角和,本题有一定难度,特别分类讨论思想的运用,使问题复杂化,掌握相关知识是解题关键5、(1)见解析;(2)FG=FC,证明见解析;(3)变化,【分析】(1)根据SAS证ABEACD,即可得证CD=BE,又AB
22、=BC,即可得证结论;(2)取AD的中点H,连接HF,HG,BF,根据三角形的中位线定理得HG=AC,FH=ED,根据SAS证BEFGHF,得出FB=FG,又FB=FC,故FG=FC;(3)先判断当E点与B点重合时FG有最大值,当E点与C点重合时FG有最小值求出FG的取值范围即可【详解】解:(1)ABC是等边三角形,BAC=60,AB=AC=BC,由旋转可知,AE=AD,EAD=60,BAC=EAD,BAE+EAC=EAC+CAD,BAE=CAD,在ABE和ACD中,ABEACD(SAS),BE=CD,BC=BE+EC=CD+EC,AB=EC+CD;(2)FG=FC,理由:取AD的中点H,连接
23、HF,HG,BF,等边三角形ABC,AEBC,点E是BC的中点,CAE=BAC=30,FEB=90,FB=FC,EAD=60,AD=AE,CAD=30,ADE是等边三角形,DE=AE,ADE=60,点H是AD的中点,点F是AE的中点,点G是CD的中点, HGAC,HG=AC,FHED,FH=ED,DHG=DAC=30,AHF=ADE=60,FH=EF,GH=BE,FHG=BEF=90,在BEF和GHF中,BEFGHF(SAS),FB=FG,AEBC,点E是BC的中点,FB=FC, FG=FC;(3)FG长度发生变化,3FG3,理由:当点E与点B重合时,则点G与点C重合,此时FG最长,如下图,ABC是等边三角形,点F是AE的中点,AF=AB=6=3,当点E与点C重合时,此时FG最短,如下图,点F是AE的中点,点G是CD的中点,FG=AD=AC=6=3,【点睛】本题主要考查图形的旋转变换,涉及全等三角形的判定和性质,三角形的中位线,等边三角形的性质等知识,熟练掌握全等三角形的判定和性质及等边三角形的性质是解题的关键