2021-2022学年度北师大版九年级数学下册第三章-圆难点解析试题(含答案解析).docx

上传人:知****量 文档编号:28169542 上传时间:2022-07-26 格式:DOCX 页数:29 大小:849.86KB
返回 下载 相关 举报
2021-2022学年度北师大版九年级数学下册第三章-圆难点解析试题(含答案解析).docx_第1页
第1页 / 共29页
2021-2022学年度北师大版九年级数学下册第三章-圆难点解析试题(含答案解析).docx_第2页
第2页 / 共29页
点击查看更多>>
资源描述

《2021-2022学年度北师大版九年级数学下册第三章-圆难点解析试题(含答案解析).docx》由会员分享,可在线阅读,更多相关《2021-2022学年度北师大版九年级数学下册第三章-圆难点解析试题(含答案解析).docx(29页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。

1、北师大版九年级数学下册第三章 圆难点解析 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、如图,一个宽为2厘米的刻度尺(刻度单位:厘米)放在圆形玻璃杯的杯口上,刻度尺的一边与杯口外沿相切,另一边与杯口外沿两

2、个交点处的读数恰好是2和8,那么玻璃杯的杯口外沿半径为()A5厘米B4厘米C厘米D厘米2、如图,有一个弓形的暗礁区,弓形所含的圆周角,船在航行时,为保证不进入暗礁区,则船到两个灯塔A,B的张角应满足的条件是( )ABCD3、下列说法正确的是( )A弧长相等的弧是等弧B直径是最长的弦C三点确定一个圆D相等的圆心角所对的弦相等4、如图,O中,半径OCAB于D,且CD2,弦AB8,则O的半径的长等于( )A3B4C5D65、如图,菱形中,以为圆心,长为半径画,点为菱形内一点,连,若,且,则图中阴影部分的面积为( )ABCD6、如图,在RtABC中,以边上一点为圆心作,恰与边,分别相切于点,则阴影部分

3、的面积为( )ABCD7、计算半径为1,圆心角为的扇形面积为( )ABCD8、矩形ABCD中,AB8,BC4,点P在边AB上,且AP3,如果P是以点P为圆心,PD为半径的圆,那么下列判断正确的是()A点B、C均在P内B点B在P上、点C在P内C点B、C均在P外D点B在P上、点C在P外9、已知O的半径为3cm,在平面内有一点A,且OA=6cm,则点A与O的位置关系是( )A点A在O内 ;B点A在O上;C点A在O外;D不能确定10、如图,面积为18的正方形ABCD内接于O,则O的半径为( )ABC3D第卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、如图,在中,以点为圆心,2为

4、半径的与相切于点,交于点,交于点,点是上一点,且,则图中阴影部分的面积是_2、一个圆锥的底面半径为5,高为12,则这个圆锥的全面积是_(结果保留)3、在半径为3的圆中,60的圆心角所对的劣弧长等于_4、圆锥底面圆的半径为2cm,其侧面展开图的圆心角是180,则圆锥的侧面积是_5、如图,已知圆锥的母线AB长为40 cm,底面半径OB长为10 cm,若将绳子一端固定在点B,绕圆锥侧面一周,另一端与点B重合,则这根绳子的最短长度是_三、解答题(5小题,每小题10分,共计50分)1、已知:如图,中,以为直径的交于点,于点(1)求证:是的切线;(2)若,求的值2、下面是小明设计的“作圆的内接等腰直角三角

5、形”的尺规作图过程.已知:O.求作:O的内接等腰直角三角形ABC. 作法:如图,作直径AB;分别以点A, B为圆心,以大于的长为半径作弧,两弧交于M 点;作直线MO交O于点C,D;连接AC,BC所以ABC就是所求的等腰直角三角形.根据小明设计的尺规作图过程,解决下面的问题:(1)使用直尺和圆规,补全图形;(保留作图痕迹)(2)完成下面的证明.证明:连接MA,MBMA=MB,OA=OB,MO是AB的垂直平分线AC= AB是直径,ACB= ( ) (填写推理依据) ABC是等腰直角三角形3、下面是小石设计的“过三角形一个顶点作其对边的平行线”的尺规作图过程已知:如图,求作:直线BD,使得作法:如图

6、,分别作线段AC,BC的垂直平分线,两直线交于点O;以点O为圆心,OA长为半径作圆;以点A为圆心,BC长为半径作孤,交于点D;作直线BD所以直线BD就是所求作的直线根据小石设计的尺规作图过程,(1)使用直尺和圆规,补全图形;(保留作图痕迹)(2)完成下面的证明证明:连接AD,点A,B,C,D在上,_(_)(填推理的依据)4、如图,O是ABC的外接圆,AD是O的直径,F是AD延长线上一点,连接CD,CF,且:CF是O的切线(1)求证:DCFCAD(2)探究线段CF,FD,FA的数量关系并说明理由;(3)若cosB,AD2,求FD的长5、已知:A,B是直线l上的两点求作:ABC,使得点C在直线l上

7、方,且AC=BC,作法:分别以A,B为圆心,AB长为半径画弧,在直线l上方交于点O,在直线l下方交于点E;以点O为圆心,OA长为半径画圆;作直线OE与直线l上方的O交于点C;连接AC,BCABC就是所求作的三角形(1)使用直尺和圆规,依作法补全图形(保留作图痕迹);(2)完成下面的证明证明:连接OA,OBOAOBAB,OAB是等边三角形A,B,C在O上,ACBAOB( )(填推理的依据)由作图可知直线OE是线段AB的垂直平分线,AC=BC( )(填推理的依据)ABC就是所求作的三角形-参考答案-一、单选题1、D【分析】根据题意先求出弦AC的长,再过点O作OBAC于点B,由垂径定理可得出AB的长

8、,设杯口的半径为r,则OB=r-2,OA=r,在RtAOB中根据勾股定理求出r的值即可【详解】解:杯口外沿两个交点处的读数恰好是2和8,AC=8-2=6厘米,过点O作OBAC于点B,则AB=AC=6=3厘米,设杯口的半径为r,则OB=r-2,OA=r,在RtAOB中,OA2=OB2+AB2,即r2=(r-2)2+32,解得r=厘米故选:D【点睛】本题考查的是垂径定理的应用,根据题意作出辅助线,构造出直角三角形是解答此题的关键2、D【分析】本题利用了三角形外角与内角的关系和圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半【详解】如图,AS交圆于点E,连接EB

9、,由圆周角定理知,AEB=C=50,而AEB是SEB的一个外角,由AEBS,即当S50时船不进入暗礁区所以,两个灯塔的张角ASB应满足的条件是ASB50cosASBcos50,故选:D【点睛】本题考查三角形的外角的性质,圆周角定理等知识,解题的关键是理解题意,灵活运用所学知识解决问题3、B【分析】利用圆的有关性质、等弧的定义、确定圆的条件及圆心角定理分别判断后即可确定正确的选项【详解】解:、能够完全重合的弧是等弧,故错误,是假命题,不符合题意;、直径是圆中最长的弦,正确,是真命题,符合题意;、不在同一直线上的三点确定一个圆,故错误,是假命题,不符合题意;、同圆或等圆中,相等的圆心角所对的弧相等

10、,所对的弦也相等,故原命题错误,是假命题,不符合题意;故选:B【点睛】本题考查了命题与定理的知识,解题的关键是了解圆的有关性质、等弧的定义、确定圆的条件及圆心角定理,难度不大4、C【分析】根据垂径定理得出AD=BD=,设O的半径的长为x,根据勾股定理,即,解方程即可【详解】解:半径OCAB于D,弦AB8,AD=BD=,设O的半径的长为x,OD=OC-CD=x-2,在RtODB中,根据勾股定理,即,解得x=5,O的半径的长为5故选择C【点睛】本题考查垂径定理,勾股定理,解拓展一元一次方程,掌握垂径定理,勾股定理,解拓展一元一次方程是解题关键5、C【分析】过点P作交于点M,由菱形得,由,得,故可得

11、,根据SAS证明,求出,即可求出【详解】如图,过点P作交于点M,四边形ABCD是菱形,在与中,在中,即,解得:,故选:C【点睛】此题主要考查了菱形的性质以及求不规则图形的面积等知识,掌握扇形的面积公式是解答此题的关键6、A【分析】连结OC,根据切线长性质DC=AC,OC平分ACD,求出OCD=OCA=30,利用在RtABC中,AC=ABtanB=3,在RtAOC中,ACO=30,AO=ACtan30=,利用三角形面积公式求出,再求出扇形面积,利用割补法求即可【详解】解:连结OC,以边上一点为圆心作,恰与边,分别相切于点A, ,DC=AC,OC平分ACD,ACD=90-B=60,OCD=OCA=

12、30,在RtABC中,AC=ABtanB=3,在RtAOC中,ACO=30,AO=ACtan30=,OD=OA=1,DC=AC=,DOC=360-OAC-ACD-ODC=360-90-90-60=120,S阴影=故选择A【点睛】本题考查切线长性质,锐角三角形函数,扇形面积,三角形面积,角的和差计算,割补法求阴影面积,掌握切线长性质,锐角三角形函数,扇形面积,三角形面积,角的和差计算,割补法求阴影面积是解题关键7、B【分析】直接根据扇形的面积公式计算即可【详解】故选:B【点睛】本题考查了扇形的面积的计算,熟记扇形的面积公式是解题的关键8、D【分析】如图所示,连接DP,CP,先求出BP的长,然后利

13、用勾股定理求出PD的长,再比较PC与PD的大小,PB与PD的大小即可得到答案【详解】解:如图所示,连接DP,CP,四边形ABCD是矩形,A=B=90,AP=3,AB=8,BP=AB-AP=5,PB=PD,点C在圆P外,点B在圆P上,故选D【点睛】本题主要考查了点与圆的位置关系,勾股定理,矩形的性质,熟知用点到圆心的距离与半径的关系去判断点与圆的位置关系是解题的关键9、C【分析】要确定点与圆的位置关系,主要确定点与圆心的距离与半径的大小关系;利用dr时,点在圆外;当d=r时,点在圆上;当dr时,点在圆内判断出即可【详解】解:O的半径为3cm,OA=6cm,dr,点A与O的位置关系是:点A在O外,

14、故选:C【点睛】本题主要考查了对点与圆的位置关系的判断关键要记住若半径为r,点到圆心的距离为d,则有:当dr时,点在圆外;当d=r时,点在圆上,当dr时,点在圆内10、C【分析】连接OA、OB,则为等腰直角三角形,由正方形面积为18,可求边长为,进而通过勾股定理,可得半径为3【详解】解:如图,连接OA,OB,则OA=OB,四边形ABCD是正方形,是等腰直角三角形,正方形ABCD的面积是18,即:故选C【点睛】本题考查了正多边形和圆、正方形的性质等知识,构造等腰直角三角形是解题的关键二、填空题1、【分析】连接AD,由圆周角定理可求出,即可利用扇形面积公式求出由切线的性质可知,即可利用三角形面积公

15、式求出最后根据,即可求出结果【详解】如图,连接AD,BC是O切线,且切点为D,故答案为:【点睛】本题考查圆周角定理,切线的性质,扇形的面积公式连接常用的辅助线是解答本题的关键2、90【分析】根据圆锥的侧面展开图是扇形,底面是圆,先求得母线长,再分别求得面积,最后相加即可求得全面积【详解】解:一个圆锥的底面半径为5,高为12,母线长为,则这个圆锥的全面积是故答案为:【点睛】本题考查了求圆锥侧面积,掌握圆锥侧面积公式是解题的关键侧面积底面半径母线长,圆锥的表面积底面积侧面积3、【分析】弧长公式为l,把半径和圆心角代入公式计算就可以求出弧长【详解】解:半径为3的圆中,60的圆心角所对的劣弧长,故答案

16、为:【点睛】本题主要考查了弧长计算,关键是掌握弧长计算公式4、【分析】设圆锥的母线长为R,根据圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,根据扇形的半径等于圆锥的母线长和弧长公式即可列出等式:,然后解方程即可得母线长,最后利用扇形的面积公式即可求出结果【详解】解:设圆锥的母线长为R,即其侧面展开图的半径为R根据题意得 ,解得:R4则圆锥的侧面积是,故答案是:【点睛】本题考查了圆锥的有关计算掌握圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长及熟记弧长公式和扇形的面积公式是解答本题的关键5、cm【分析】根据底面圆的周长等于扇形的弧长求解扇形的

17、圆心角 再利用勾股定理求解即可.【详解】解:圆锥的侧面展开图如图所示:设圆锥侧面展开图的圆心角为n, 圆锥底面圆周长为 则n=90, 即这根绳子的最短长度是cm, 故答案为:【点睛】本题考查的是圆锥的侧面展开图,弧长的计算,掌握“圆锥的底面圆的周长等于展开图的弧长求解圆心角”是解本题的关键.三、解答题1、(1)见解析;(2)【分析】(1)根据等腰三角形的性质证得,进而证得OPAC,再根据平行线的性质和切线的判定即可证得结论;(2)连接,根据圆周角定理和等腰三角形的性质可得,再根据含30角的直角三角形性质求出BP即可求解【详解】(1)证明:,OPAC,又OP是半径,是的切线;(2)解:连接,如图

18、,为直径,AB=AC,CAB=120,在RtAPB中,【点睛】本题考查等腰三角形的性质、平行线的判定与性质、切线的判定、圆周角定理、含30角的直角三角形性质、三角形内角和定理,熟练掌握这些知识的联系与运用是解答的关键2、(1)见解析;(2)BC,90,直径所对的圆周角是直角【分析】(1)过点O任作直线交圆于AB两点,再作AB的垂直平分线OM,直线MO交O于点C,D;连结AC、BC即可;(2)根据线段垂直平分线的判定与性质得出AC=BC,根据圆周角定理得出ACB=90即可【详解】(1)作直径AB;分别以点A, B为圆心,以大于的长为半径作弧,两弧交于M 点;作直线MO交O于点C,D;连接AC,B

19、C所以ABC就是所求的等腰直角三角形.(2)证明:连接MA,MBMA=MB,OA=OB,MO是AB的垂直平分线AC=BCAB是直径,ACB=90(直径所对的圆周角是直角) ABC是等腰直角三角形故答案为:BC,90,直径所对的圆周角是直角【点睛】本题考查尺规作圆内接等腰直角三角形,圆周角定理,线段垂直平分线判定与性质,掌握尺规作圆内接等腰直角三角形,圆周角定理,线段垂直平分线判定与性质是解题关键3、(1)作图见解析;(2) 在同圆中,等弧所对的圆周角相等【分析】(1)根据题干的作图步骤依次作图即可;(2)由作图可得,证明,利用圆周角定理可得,从而可得答案.【详解】解:(1)如图,直线BD就是所

20、求作的直线 (2)证明:连接AD,点A,B,C,D在上,(在同圆中,等弧所对的圆周角相等)故答案为: 在同圆中,等弧所对的圆周角相等【点睛】本题考查的是作线段的垂直平分线,三角形的外接圆,平行线的作图,圆周角定理的应用,掌握“圆周角定理”是理解作图的关键.4、(1)见解析;(2),见解析;(3)【分析】(1)连接OC,根据直径所对的圆周角为直角及切线的性质和各角之间的等量关系即可证明;(2)根据相似三角形的判定定理可得CFDAFC,依据相似三角形的性质:对应边成比例即可得出;(3)根据同弧所对的圆周角相等可得:,在中,利用锐角三角函数可得,由勾股定理确定,由此得出,即为(2)中的相似比,设,则

21、,将其代入(2)中结论求解即可【详解】解:(1)连接OC,如图所示:AD为直径,CF为的切线,即,;(2)在CFD与中,CFDAFC,;(3),在中,由(2)结论可得:CFDAFC,设,则,将其代入结论(2)可得:,解得:或(舍去),【点睛】题目主要考查圆周角定理、相似三角形的判定和性质、锐角三角函数解三角形、勾股定理等,理解题意,综合运用这些知识点是解题关键5、(1)见解析;(2)同弧所对的圆周角等于圆心角的一半;线段垂直平分线上的点到这条线段两个端点的距离相等【分析】(1)根据题意补全图形;(2)根据同一个圆中,同弧所对的圆周角等于圆心角的一半,及垂直平分线上的点到两端点的距离相等即可【详解】(1)作图正确;(2)证明:连接OA,OBOAOBAB,OAB是等边三角形A,B,C在O上,ACBAOB(同弧所对的圆周角等于圆心角的一半)(填推理的依据)由作图可知直线OE是线段AB的垂直平分线,AC=BC(线段垂直平分线上的点到这条线段两个端点的距离相等)(填推理的依据)ABC就是所求作的三角形,故答案是:同弧所对的圆周角等于圆心角的一半;线段垂直平分线上的点到这条线段两个端点的距离相等【点睛】本题是圆的综合题、作图、考查了圆周角定理、垂直平分线、等腰三角形,解题的关键是熟练掌握圆周角定理及作图的基本能力

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 应用文书 > 策划方案

本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

工信部备案号:黑ICP备15003705号© 2020-2023 www.taowenge.com 淘文阁