京改版七年级数学下册第八章因式分解同步测评练习题(无超纲).docx

上传人:可****阿 文档编号:30750197 上传时间:2022-08-06 格式:DOCX 页数:16 大小:199.04KB
返回 下载 相关 举报
京改版七年级数学下册第八章因式分解同步测评练习题(无超纲).docx_第1页
第1页 / 共16页
京改版七年级数学下册第八章因式分解同步测评练习题(无超纲).docx_第2页
第2页 / 共16页
点击查看更多>>
资源描述

《京改版七年级数学下册第八章因式分解同步测评练习题(无超纲).docx》由会员分享,可在线阅读,更多相关《京改版七年级数学下册第八章因式分解同步测评练习题(无超纲).docx(16页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。

1、京改版七年级数学下册第八章因式分解同步测评 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、下列从左到右的变形,是因式分解的是( )A(x4)(x4)x216Bx2x6(x3)(x2)Cx21x(x)Da2

2、bab2ab(ab)2、下列由左到右的变形,是因式分解的是( )ABCD3、下列多项式不能用公式法因式分解的是( )ABCD4、下列从左边到右边的变形中,是因式分解的是( )ABCD5、下列各式从左至右是因式分解的是( )ABCD6、下列各式中,能用平方差公式分解因式的是()Aa2b2Ba2+b2Ca2+(b)2Da3ab37、下列等式中,从左到右的变形是因式分解的是( )ABCD8、下列多项式中有因式x1的是()x2+x2;x2+3x+2;x2x2;x23x+2ABCD9、下列各式从左到右的变形中,是因式分解的为()Ax(ab)axbxBx23x+1x(x3)+1Cx24(x+2)(x2)D

3、m+1x(1+)10、若x2ax9(x3)2,则a的值为( )A3B6C3D6第卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、当x_时,x22x+1取得最小值2、分解因式:_3、因式分解:_;_4、观察下列因式分解中的规律:;利用上述系数特点分解因式_5、分解因式_三、解答题(5小题,每小题10分,共计50分)1、完成下列各题:(1)计算: (2)因式分解: 2、分解因式:(1);(2)3、(1)因式分解: (2)计算:4、分解因式(1)(2)5、将下列多项式进行因式分解:(1);(2)-参考答案-一、单选题1、D【解析】【分析】分解因式就是把一个多项式化为几个整式的积

4、的形式,因此,要确定从左到右的变形中是否为因式分解或者分解因式是否正确,逐项进行判断即可【详解】A、结果不是积的形式,因而不是因式分解;B、,因式分解错误,故错误;C、 不是整式,因而不是因式分解;D、满足因式分解的定义且因式分解正确;故选:D【点睛】题目主要考查的是因式分解的概念及方法,熟练掌握理解因式分解的定义及方法是解题关键2、A【解析】【分析】根据因式分解的定义,对各选项作出判断,即可得出正确答案【详解】解:A、,是因式分解,故此选项符合题意;B、,原式分解错误,故本选项不符合题意;C、右边不是整式的积的形式,故本选项不符合题意;D、原式是整式的乘法运算,不是因式分解,故本选项不符合题

5、意;故选:A【点睛】本题考查了分解因式的定义解题的关键是掌握分解因式的定义:把一个多项式化为几个整式的积的形式,这种变形叫做把这个多项式因式分解,也叫做分解因式3、C【解析】【分析】A、B选项考虑利用完全平方公式分解,C、D选项考虑利用平方差公式分解【详解】解:A.a2-8a+16=(a-4)2,故选项A不符合题意;B. ,故选项B不符合题意;C. -a2-9不是平方差的形式,不能运用公式法因式分解,故选项C符合题意;D. ,故选项D不符合题意;故选C【点睛】本题考查了整式的因式分解,掌握因式分解的公式法是解决本题的关键4、A【解析】【分析】根据因式分解的定义逐个判断即可【详解】解:A是因式分

6、解,故本选项符合题意;B等式的左边不是多项式,所以不是因式分解,故本选项不合题意; C等式的右边不是几个整式的积的形式,所以不是因式分解,故本选项不合题意;D等式的右边不是几个整式的积的形式,不是因式分解,故本选项不符合题意;故选:A【点睛】本题考查了因式分解的定义,能熟记因式分解的定义的内容是解此题的关键,注意:把一个多项式化成几个整式的积的形式,叫因式分解5、A【解析】【分析】根据因式分解的定义逐个判断即可【详解】解:A、,等式从左到右的变形属于因式分解,故本选项符合题意;B、,等式的右边不是几个整式的积的形式,不是因式分解,故本选项不符合题意;C、,是整式的乘法,不是因式分解,故本选项不

7、符合题意;D、,是整式的乘法,不是因式分解,故本选项不符合题意故选:A【点睛】本题考查了因式分解的定义,能熟记因式分解的定义的内容是解此题的关键,注意:把一个多项式化成几个整式的积的形式,叫因式分解6、B【解析】【分析】能用平方差公式分解因式的式子必须是两项是平方项,符号为异号【详解】解:A、两项的符号相同,不能用平方差公式分解因式;故此选项错误;B、,能用平方差公式分解因式,故此选项正确;C、两项的符号相同,不能用平方差公式分解因式,故此选项错误;D提公因式后不是平方差形式,故不能用平方差公式因式分解,故此选项错误故选B【点睛】本题考查了平方差公式分解因式,熟记平方差公式结构两项式,异号,平

8、方项(或变性后具备平方项)是解题的关键7、C【解析】【分析】把一个多项式化为几个整式的积的形式,这种变形叫做把这个多项式因式分解,据此逐一判断即可得答案【详解】A.等号右边不是几个整式的积的形式,不是因式分解,不符合题意,B.等号右边不是几个整式的积的形式,不是因式分解,不符合题意,C.是把一个多项式化为几个整式的积的形式,是因式分解,符合题意,D.等号右边不是几个整式的积的形式,不是因式分解,不符合题意,故选:C【点睛】此题考查了因式分解的概念,把一个多项式化为几个整式的积的形式,这种变形叫做把这个多项式因式分解;练掌握因式分解的概念是题关键8、D【解析】【分析】根据十字相乘法把各个多项式因

9、式分解即可判断【详解】解:x2+x2;x2+3x+2;x2x2;x23x+2有因式x1的是故选:D【点睛】本题考查了十字相乘法因式分解,对于形如的二次三项式,若能找到两数,使,且,那么就可以进行如下的因式分解,即9、C【解析】【分析】根据因式分解是把一个多项式转化成几个整式积的形式,可得答案【详解】解:A、是整式的乘法,故A错误,不符合题意;B、没把一个多项式转化成几个整式积的形式,故B错误,不符合题意;C、把一个多项式转化成几个整式积的形式,故C正确,符合题意;D、等号左右两边式子不相等,故D错误,不符合题意;故选C【点睛】本题考查了因式分解的意义,明确因式分解的结果应是整式的积的形式是解题

10、的关键10、B【解析】【分析】由结合从而可得答案.【详解】解: 而 故选:B【点睛】本题考查的是利用完全平方公式分解因式,掌握“”是解题的关键.二、填空题1、1【解析】【分析】先根据完全平方公式配方,再根据偶次方的非负性即可求解【详解】解:,当x1时,x22x+1取得最小值故答案为:1【点睛】本题考查了完全平方公式,解题的关键是掌握完全平方公式2、3 a(a-2)【解析】【分析】分析提取公因式3a,进而分解因式即可【详解】3a-6a=3a(a-2),故答案为3a(a-2)【点睛】此题主要考查了提取公因式法分解因式,正确得出公因式是解题关键3、 【解析】【分析】利用平方差公式和完全平方公式分解因

11、式即可【详解】解:;故答案为:,【点睛】本题考查了用公式法分解因式,熟练掌握公式法分解因式是解决本题的关键4、【解析】【分析】利用十字相乘法分解因式即可【详解】解:,故答案为:【点睛】本题考查了十字相乘法因式分解,解题关键是明确二次项系数为1的十字相乘法公式:5、【解析】【分析】原式提取m后,利用完全平方公式分解即可【详解】解:故答案为:【点睛】本题考查了因式分解,掌握提公因式法因式分解和公式法因式分解是解题的关键三、解答题1、(1);(2);【解析】【分析】(1)先算乘方,再算乘除,即可求解;(2)直接个那句多项式除以单项式法则计算,即可求解;(3)利用提出公因式法因式分解,即可求解;(4)

12、利用平方差公式,即可求解【详解】解: ; ;(2) ; 【点睛】本题主要考查了多项式除以单项式,多项式的因式分解,熟练掌握相关运算法则是解题的关键2、(1);(2)【解析】【分析】(1)先提取公因式,然后再根据平方差公式进行因式分解即可;(2)先利用完全平方公式展开,然后合并同类项,进而再因式分解即可【详解】解:(1)原式=;(2)原式=【点睛】本题主要考查因式分解,熟练掌握因式分解的方法是解题的关键3、(1);(2)【解析】【分析】(1)首先提取公因式,再根据完全平方公式计算,即可得到答案;(2)根据平方差公式和合并同类项的性质计算,即可得到答案【详解】(1);(2)【点睛】本题考查了乘法公

13、式、整式、因式分解的知识;解题的关键是熟练掌握平方差公式、完全平方公式,从而完成求解4、(1)3x(1+2x)(1-2x);(2)(5a+b)(a+5b)【解析】【分析】(1)先提取公因式3x,再根据平方差公式进行二次分解即可求得答案;(2)根据完全平方公式进行分解即可【详解】(1)3x12x3=3x(14x2)=3x(12x)(1+2x)(2)9(a+b)24(ab)2=3(a+b2-2(a-b)2=3(a+b)+2(a-b)3(a+b)-2(a-b)=(3a+3b+2a-2b)(3a+3b-2a+2b)=(5a+b)(a+5b)【点睛】此题考查提公因式法与公式法的综合运用,解题关键在于掌握运算法则5、(1);(2)【解析】【分析】(1)提取公因式然后利用完全平方公式进行因式分解即可;(2)提取公因式然后利用平方差公式进行因式分解即可【详解】解:(1)原式;(2)原式【点睛】此题考查了因式分解,涉及了平方差公式和完全平方公式,解题的关键是掌握因式分解的方法

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 应用文书 > 策划方案

本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

工信部备案号:黑ICP备15003705号© 2020-2023 www.taowenge.com 淘文阁