《2022年最新精品解析沪科版八年级下册数学期末专项测评-卷(Ⅰ)(含答案详解).docx》由会员分享,可在线阅读,更多相关《2022年最新精品解析沪科版八年级下册数学期末专项测评-卷(Ⅰ)(含答案详解).docx(25页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、 线 封 密 内 号学级年名姓 线 封 密 外 沪科版八年级下册数学期末专项测评 卷() 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、下列结论中,对于任何实数a、b都成立的是()ABCD2、为了绿化荒山
2、,某地区政府提出了2028年荒山的森林覆盖率达到45%的目标已知2019年该地区森林覆盖率已达到34%,若要在2021年使该地区荒山的森林覆盖率达到38%设从2019年起该地区荒山的森林覆盖率的年平均增长率为,则可列方程为( )ABCD3、一元二次方程的一次项系数是( )ABC2D4、为了解学生的睡眠状况,调查了一个班50名学生每天的睡眠时间,绘成睡眠时间条形统计图如图所示,则所调查学生睡眠时间的众数,中位数分别为()A7h,7hB8h,7.5hC7h,7.5hD8h,8h5、下列运算正确的是( )ABCD6、估计的值应在( )A5和6之间B6和7之间C7和8之间D8和9之间7、新冠肺炎是一种
3、传染性极强的疾病,如果有一人患病,经过两轮传染后有100人患病,设每轮传染中平均一个人传染了x个人,下列列式正确是( )Ax+x(1+x)100B1+x+x2100C1+x+x(1+x)100Dx(1+x)1008、原价为80元的某商品经过两次涨价后售价100元,如果每次涨价的百分率都为,那么根据题意所列的方程为( )ABCD9、在菱形ABCD中,对角线AC、BD相交于点O,AB5,AC6,过点D作AC的平行线交BC的延长线于点E,则BDE的面积为( ) 线 封 密 内 号学级年名姓 线 封 密 外 A22B24C48D4410、若 是关于x的一元二次方程,则m的取值范围是()Am2Bm0Cm
4、2Dm2第卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、计算_2、若正多边形的一个外角为40,则这个正多边形是_边形3、如图,和都是等边三角形,连接AD,BD,BE,下列四个结论中:;,正确的是_(填写所有正确结论的序号)4、计算_5、如图,正方形ABCD内有一等边三角形BCE,直线DE交AB于点H,过点E作直线GFDH交BC于点G,交AD于点F以下结论:CEG15;AFDF;BH3AH;BEHE+GE;正确的有_(填序号)三、解答题(5小题,每小题10分,共计50分)1、如图,点O是等边三角形ABC内的一点,将BOC绕点C顺时针旋转60得ADC,连接OD(1)当时,
5、;(2)当时, ;(3)若,则OA的长为 2、解方程:x2+x+103、小乾同学提出一种新图形定义:一组对边相等且垂直的四边形叫等垂四边形如图1,四边形ABCD中,AB=CD,ABCD,四边形ABCD即为等垂四边形,其中相等的边AB、CD称为腰,另两边AD、BC称为底(1)性质初探:小乾同学探索了等垂四边形的一些性质,请你补充完整: 线 封 密 内 号学级年名姓 线 封 密 外 等垂四边形两个钝角的和为 ;若等垂四边形的两底平行,则它的最小内角为 (2)拓展研究:小坤同学发现两底中点的连线与腰长有特定的关系,如图2,M、N分别为等垂四边形ABCD的底AD、BC的中点,试探索MN与AB的数量关系
6、,小坤的想法是把其中一腰绕一个中点旋转180,请按此方法求出MN与AB的数量关系,并写出AB与MN所在直线相交所成的锐角度数如图1,等垂四边形ABCD的腰为AB、CD,AB=CD=AD=3,则较长的底BC长的取值范围是 (3)实践应用:如图3,直线l1,l2是两条相互垂直的公路,利用三段围栏AB、BC、AD靠路边按如图方式围成一块四边形种植园,第四条边CD做成一条隔离带,已知AB=250米,BC=240米,AD=320米,此隔离带最长为多少米?4、解方程:(x29)+x(x3)05、因式分解:-参考答案-一、单选题1、D【分析】根据二次根式运算的公式条件逐一判断即可【详解】a0,b0时,A不成
7、立;a0,b0时,B不成立;a0时,C不成立;,D成立;故选D【点睛】本题考查了二次根式的性质,熟练掌握公式的使用条件是解题的关键2、C【分析】增长率问题,一般用增长后的量=增长前的量(1+增长率),参照本题,如果设年平均增长率为x,根据“2019年我市森林覆盖率已达到34%,要在2021年使全市森林覆盖率达到38%”,可列出方程【详解】解:由题意可得:2020年,全市森林覆盖率为:34%(1+x);2021年,全市森林覆盖率为:34%(1+x)(1+x)=34%(1+x)2;所以可列方程为34%(1+x)2=38%;故选C【点睛】本题考查求平均变化率的方法若设变化前的量为a,变化后的量为b,
8、平均变化率为x,则经过两次变化后的数量关系为a(1x)2=b3、D 线 封 密 内 号学级年名姓 线 封 密 外 【分析】根据一元二次方程的一般形式中,叫做方程的一次项,其中是一次项系数进行解答【详解】解:一元二次方程的一次项系数是,故选:D【点睛】本题考查了一元二次方程的一般形式及其各项的概念,掌握一元二次方程的一般形式中,叫做方程的二次项,其中是二次项系数,叫做方程的一次项,其中是一次项系数,叫做方程的常数项是解题关键4、C【分析】权数最大的数据是众数,第25个,26个数据的平均数是中位数,计算即可【详解】7的权数是19,最大,所调查学生睡眠时间的众数是7小时,根据条形图,得第25个数据是
9、7小时,第26个数据是8小时,所调查学生睡眠时间的中位数是=7.5小时,故选C【点睛】本题考查了条形统计图,中位数即数据排序后,中间的数或中间两位数的平均数;众数即数据中出现次数最多的数据,正确计算中位数是解题的关键5、D【分析】根据二次根式的加减,二次根式的性质,计算选择即可【详解】不是同类项,无法计算,A计算错误;不是同类项,无法计算,B计算错误;, C计算错误;,D计算正确;故选D【点睛】本题考查了二次根式的加减,二次根式的性质,熟练掌握,是解题的关键6、B【分析】化简原式等于,因为,所以,即可求解. 线 封 密 内 号学级年名姓 线 封 密 外 【详解】解:=,67,故选:B【点睛】本
10、题考查二次根式的除法和无理数的估算;能够将给定的无理数锁定在相邻的两个整数之间是解题的关键7、C【分析】设每轮传染中平均一个人传染了x个人,则第一轮传染了x人,第二轮传染了x(1+x)人,根据经过两轮传染后有100患病,即可得出关于x的一元二次方程,此题得解【详解】解:设每轮传染中平均一个人传染了x个人,则第一轮传染了x人,第二轮传染了x(1+x)人,依题意得:1+x+x(1+x)=100故选:C【点睛】本题考查了由实际问题抽象出一元二次方程,找准等量关系,正确列出一元二次方程是解题的关键8、A【分析】根据每次涨价的百分率都为,利用百分率表示某商品经过两次涨价后售价,根据题意所列的方程为:即可
11、【详解】解:每次涨价的百分率都为,某商品经过两次涨价后售价,根据题意所列的方程为:故选项A【点睛】本题考查列一元二次方程解增长率问题应用题,掌握列一元二次方程解增长率问题应用题方法与步骤,抓住等量关系,两种表示涨价后的价格相同列方程是解题关键9、B【分析】先判断出四边形ACED是平行四边形,从而得出DE的长度,根据菱形的性质求出BD的长度,利用勾股定理的逆定理可得出BDE是直角三角形,计算出面积即可【详解】解: 菱形ABCD, 在RtBCO中, 即可得BD=8, 四边形ACED是平行四边形, AC=DE=6, BE=BC+CE=10, 线 封 密 内 号学级年名姓 线 封 密 外 BDE是直角
12、三角形, SBDE=DEBD=24 故选:B【点睛】本题考查了菱形的性质,勾股定理的逆定理及三角形的面积,平行四边形的判定与性质,求出BD的长度,判断BDE是直角三角形,是解答本题的关键10、D【详解】解: 是关于x的一元二次方程, , 故选:D【点睛】本题主要考查了一元二次方程的定义,熟练掌握含有一个未知数,且未知数的最高次数为2的整式方程叫做一元二次方程是解题的关键二、填空题1、【分析】直接利用零指数幂,化简绝对值求解即可【详解】解:故答案为:【点睛】本题考查了零指数幂、化简绝对值,解题的关键是掌握相应的运算法则2、九【分析】利用任意凸多边形的外角和均为,正多边形的每个外角相等即可求出答案
13、【详解】解:多边形的每个外角相等,且其和为,据此可得,解得故答案为:九【点睛】本题主要考查了正多边形外角和的知识,解题的关键是掌握正多边形的每个外角相等,且其和为,比较简单3、【分析】利用等边三角形的性质即可证明出;在四边形中,根据,可得,即;先求出,得,通过等量代换即可;根据即可判断【详解】解:和都是等边三角形, 线 封 密 内 号学级年名姓 线 封 密 外 ,故正确;,在四边形中,故错误;,故正确;,不一定等于,不一定成立,故错误;故答案是:【点睛】本题考查了等边三角形的性质,三角形全等的判定定理、勾股定理、多边形内角和,解题的关键掌握等边三角形的性质,通过等量代换的思想进行求解4、【分析
14、】根据二次根式的除法,二次根式的性质化简,最后合并同类二次根式即可【详解】解:故答案为:【点睛】本题考查了二次根式的混合运算,熟练掌握二次根式的运算法则是解题关键5、【分析】由正方形的性质和等边三角形的性质可得,可得,可求,故正确;由“ “可证,可得,可证,由线段垂直平分线的性质可得,故错误;设,由等边三角形的性质和三角形中位线定理分别求出,的长,可判断,通过证明点,点,点,点四点共圆,可得,可证,由三角形三边关系可判断,即可求解【详解】解:四边形是正方形,是等边三角形,故正确; 线 封 密 内 号学级年名姓 线 封 密 外 如图,连接,过点作直线于,交于,连接,又,又,故错误;设,四边形是矩
15、形,是等边三角形,又,故错误;如图,连接,点,点,点,点四点共圆, 线 封 密 内 号学级年名姓 线 封 密 外 ,故错误;故答案为:【点睛】本题是四边形综合题,考查了全等三角形的判定和性质,等边三角形的性质,正方形的性质,勾股定理等知识,解题的关键是灵活运用这些性质解决问题三、解答题1、(1)40;(2)60;(3)【分析】(1)证明COD是等边三角形,得到ODC=60,即可得到答案;(2)利用ADC-ODC求出答案;(3)由BOCADC,推出ADC=BOC=150,AD=OB=8,根据COD是等边三角形,得到ODC=60,OD=,证得AOD是直角三角形,利用勾股定理求出(1)解:CO=CD
16、,OCD=60,COD是等边三角形;ODC=60,ADC=BOC=,ADC-ODC=40,故答案为:40;(2)ADC=BOC=,ADC-ODC=60,故答案为:60;(3)解:当,即BOC=150,AOD是直角三角形BOCADC,ADC=BOC=150,AD=OB=8,又COD是等边三角形,ODC=60,OD=,ADO=90,即AOD是直角三角形,,故答案为:【点睛】本题以“空间与图形”中的核心知识(如等边三角形的性质、全等三角形的性质与证明、直角三角形的判定、多边形内角和等)为载体,内容由浅入深,层层递进试题中几何演绎推理的难度适宜,蕴含着丰富的思想方法(如运动变化、数形结合、分类讨论、方
17、程思想等),能较好地考查学生的推理、探究及解决问题的能力2、,【分析】先求出的值,再代入公式求出即可 线 封 密 内 号学级年名姓 线 封 密 外 【详解】,则,即,【点睛】本题考查了公式法解一元二次方程,解题关键是熟记一元二次方程求根公式,准确计算3、(1)270;45;(2),AB与MN所在直线相交所成的锐角度数为45,理由见解析;(3)650米【分析】(1)延长CD与BA延长线交于点P,则P=90,可以得到B+C=90,再由B+C+BAD+ADC=360,即可得到BAD+ADC=270;延长CD交BA延长线于P,过点D作DEAB交BC于E,则DEC=B,由等垂四边形的两底平行,即ADBC
18、,可证四边形ABED是平行四边形,得到DE=AB,再由AB=CD,ABCD得到DE=CD,DECD,则DEC=C=45,即四边形ABCD的最小内角为45;(2)延长CD交BA延长线与P,交NM延长线与Q,NM延长线与BA延长线交于点F,将腰AB绕中点M旋转180得到DE,连接CE,BE,由旋转的性质可得:MB=ME,AB=DE,ABM=DEM,则CD=AB=DE,ABDE,即可推出DEC=DCE,EDC=EDP=BPD=90,由勾股定理得到,DEC=DCE=45,再证MN是BCE的中位线,得到,MNCE,则NQC=DCE=45,由此即可推出直线AB与直线MN所在直线相交所成的锐角度数为45;延
19、长CD交BA延长线于P,取AD,BC的中点,M、N连接PM,PN,同理可得APD=90,则,即,由(2)可知,即可推出,再由PMN随着PA减小而减小,当点P与点A重合时,PMN最小,此时PN最小,即BC最小,即此时A、D、C三点共线由勾股定理得:,则;(3)仿照(2)进行求解即可(1)解:如图所示,延长CD与BA延长线交于点P,四边形ABCD为等垂四边形,即AB=CD,ABCD,P=90,B+C=90,B+C+BAD+ADC=360,BAD+ADC=270,故答案为:270;如图所示,延长CD交BA延长线于P,过点D作DEAB交BC于E,DEC=B,等垂四边形的两底平行,即ADBC,四边形AB
20、ED是平行四边形,DE=AB,又AB=CD,ABCD 线 封 密 内 号学级年名姓 线 封 密 外 DE=CD,DECD,DEC=C=45,四边形ABCD的最小内角为45,故答案为:45;(2)解:,AB与MN所在直线相交所成的锐角度数为45,理由如下:延长CD交BA延长线与P,交NM延长线与Q,NM延长线与BA延长线交于点F,将腰AB绕中点M旋转180得到DE,连接CE,BE,四边形ABCD是等垂四边形,AB=CD,ABCD,BPC=90,M是AD的中点,MA=MD,由旋转的性质可得:MB=ME,AB=DE,ABM=DEM,CD=AB=DE,ABDE,DEC=DCE,EDC=EDP=BPD=
21、90,DEC=DCE=45,又M、N分别是BE,BC的中点,MN是BCE的中位线,MNCE,NQC=DCE=45,BPC=90,QPF=90,QFP=45,直线AB与直线MN所在直线相交所成的锐角度数为45;如图所示,延长CD交BA延长线于P,取AD,BC的中点,M、N连接PM,PN,同理可得APD=90,即,由(2)可知,又PMN随着PA减小而减小,当点P与点A重合时,PMN最小,此时PN最小,即BC最小,即此时A、D、C三点共线由勾股定理得:, 线 封 密 内 号学级年名姓 线 封 密 外 故答案为:;(3)解:如图所示,取AB,CD的中点M,N,连接MN,作点C关于M的对称点E,连接CE
22、,AE,DE,设直线l1与直线l2交于点P,由(2)可知,AEBC,AE=BC=240米,l1l2,APB=PAE=90,DAE=90,米,M、N分别是CE,CD的中点,MN是CED的中位线,米,MNDE,M为AB的中点,APB=90,米,同理可得,即米,米,隔离带最长为650米【点睛】本题主要考查了等腰直角三角形的性质与判定,三角形中位线定理,直角三角形斜边上的中线,勾股定理,三角形三边的关系等等,解题的关键在于能够正确理解题意作出辅助线求解4、【分析】利用因式分解法解一元二次方程即可得【详解】解:,即,或,或,故方程的解为【点睛】本题考查了解一元二次方程,熟练掌握方程的解法(直接开平方法、因式分解法、公式法、配方法等)是解题关键5、 线 封 密 内 号学级年名姓 线 封 密 外 【分析】设 则 令 求解的值,再分解因式即可.【详解】解:设 则 令 即 【点睛】本题考查的是一元二次方程的解法,利用一元二次方程的求根公式分解因式,熟练的利用公式法解一元二次方程是解本题的关键.